

GUILFORD COUNTY, NORTH CAROLINA

CONTRACT # D06028-A

Prepared For:

Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

ANNUAL MONITORING REPORT (YEAR 3 OF 5)

DECEMBER 2010

TRIBUTARY TO REEDY FORK CREEK STREAM RESTORATION

GUILFORD COUNTY, NORTH CAROLINA

CONTRACT # D06028-A

Prepared For:

Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

ANNUAL MONITORING REPORT (YEAR 3 OF 5)

DECEMBER 2010

Owner

NCDENR Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

EEP Project Manager: Guy Pearce Phone: (919) 715-1656

Design and Monitoring Firm

Mulkey Engineers and Consultants 6750 Tryon Road Cary, North Carolina 27518 Phone: (919) 851-1912 Fax: (919) 851-1918

Project Manager: Wendee B. Smith Phone: (919) 858-1833

Project Engineer: Emmett Perdue Phone: (919) 858-1874

Table of Contents

1.0	Executive Summary	1
2.0	Project Background	. 5
2.1	Project Location and Setting	5
2.2	Project Goals and Objectives	5
2.3	Project Restoration Approach and Mitigation Type	5
2.4	Project History	6
2.5	Project Monitoring Plan View	7
3.0	Project Condition and Monitoring Results	7
3.1	Project Vegetation Monitoring	7
3.1.1	Vegetation Monitoring Methodology	7
3.1.2	Vegetation Monitoring Success Criteria	9
3.1.3	Vegetation Monitoring Results for Year 1 of 5	9
3.1.4	Vegetation Monitoring Results for Year 2 of 5	10
3.1.5	Vegetation Monitoring Results for Year 3 of 5	10
3.2	Project Stream Monitoring	11
3.2.1	Stream Monitoring Methodology	11
3.2.2	Stream Monitoring Success Criteria	14
3.2.3	Stream Monitoring Results for Year 1 of 5	15
3.2.4	Stream Monitoring Results for Year 2 of 5	18
3.2.5	Stream Monitoring Results for Year 3 of 5	20
4.0	Project Monitoring Methodology	. 23
5.0	References	. 24

Figures

Figure 1. Location Map

Tables

Table I.	Project Restoration Approach and Mitigation Type
Table II.	Project Activity and Reporting History
Table III.	Project Contacts
Table IV.	Project Background
Table V.	Stem Counts Monitoring Year 3 for Each Species Arranged by Plot
Table VI.	Vegetative Problem Areas
Table VII.	Baseline Morphology and Hydraulic Summary
Table VIII.	Morphology and Hydraulic Monitoring Summary
Table IX.	BEHI and Sediment Transport Estimates
Table X.	Verification of Bankfull Events
Table XI.	Categorical Stream Feature Visual Stability Assessment
T 11 X/XX	

Table XII. Stream Problem Areas

Appendices

Appendix A.	Monitoring Plan View
Appendix B.	Vegetation Plot Photos
Appendix C.	Reference Point Photos
Appendix D.	Cross Section Photos
Appendix E.	Raw Data

1.0 Executive Summary

This annual monitoring report details the monitoring activities through the third year and the results for the Tributary to Reedy Fork Creek Stream Restoration Site (RFC). All of the monitoring activities were conducted and the subsequent results are reported in accordance with the approved mitigation plan (Mulkey Engineers and Consultants, 2008) for RFC. The content and format of this report were developed in accordance with the contract requirements for the Full Delivery RFP 16-D06028 (NCEEP, 2005). Accordingly, this report includes project background information, project monitoring results, and description of the project monitoring methodology.

Mulkey Engineers & Consultants (Mulkey) submitted RFC for the Full Delivery RFP 16-D06028 to provide 7,000 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the Ecosystem Enhancement Program Department of Environment and Natural Resources (NCEEP) and began work on the project on November 26, 2007. The primary goals of RFC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat. These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for approximately 7,511 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

RFC located in Guilford County, North Carolina near the Town of Gibsonville and is situated in the Cape Fear River Basin. Past land use practices, including extensive cattle farming and clearing of the riparian buffers resulted in substantial degradation of the stream systems at RFC. RFC is comprised of seven stream reaches totaling approximately 7,511 feet of restored stream channel. All of the analyses, design, and restoration at RFC were accomplished using natural stream channel design methods. In addition to stream channel restoration, the restored stream banks and the riparian and upland buffer areas along RFC were also replanted with native species vegetation.

The survivability of the planted vegetation at RFC will be monitored at representative vegetation plots as well as project-wide. Stem counts, photo documentation and comparison, and visual assessment will be utilized. Bare root stock were planted at a density of 680 stems per acre (eight foot by eight foot spacing) and live stakes were planted on the stream banks at a density of 1,742 stems per acre (five foot by five foot spacing). A

Tributary to Reedy Fork Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

total of 16 representative vegetation plots were installed at RFC based on the recommendations set forth by NCEEP regarding the acreage contained in the conservation easement. The survivability of the planted woody vegetation at RFC will be monitored using annual stem counts at each of the plots. In addition to the stem counts, annual photos will be taken at each of the plots and also from eight other permanent photo reference points. The vegetation plot photos will be used for photo documentation and comparison of the vegetation growth at each plot. The photo documentation at the reference points will be employed to assist in a project-wide visual assessment of the vegetation at RFC. Survivability will be based on achieving a minimum of 320 stems per acre, the rate required to be present during the third year of monitoring, across the project site. The stem counts will be conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification.

In late September 2008, the vegetation monitoring for Monitoring Year 1 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts for the 16 vegetation plots ranged from 121 to 972 stems per acre, with an average survivability of 478 stems per acre. These results indicated that the survivability of the planted woody vegetation at RFC may not meet the success criteria of achieving at least 320 stems per acre after three years and 260 stems per acre after five years at RFC. Based on the results of the stem counts, supplemental plantings of bare root seedlings were recommended to be conducted by Mulkey during the 2008-2009 planting season to ameliorate any deficiencies. The comparisons of the baseline and Monitoring Year 1 photos at both the 16 vegetation plot photo reference points and the eight permanent photo reference points did not reveal any concerns, problems, or negative trends. No vegetation problem areas were observed or documented during the project-wide visual assessment. Beyond the described supplemental plantings, Mulkey did not make any additional recommendations or take any other action other than to proceed with the annual vegetation monitoring.

Mulkey conducted the recommended supplemental plantings of bare root seedlings in late winter 2008. These supplemental plantings were conducted only at the areas of the site where the most mortality was observed. Subsequent to the described replanting, the results of the Monitoring Year 2 stem counts, conducted in September of 2009, showed that the counts for the 16 vegetation plots ranged from 504 to 972 stems per acre, with an average survivability of 697 stems per acre. These results indicated that the survivability of the planted woody vegetation at RFC should meet the success criteria of achieving at least 320 stems per acre after three years and 260 stems per acre after five years at RFC. The comparisons of the baseline, Monitoring Year 1, and Monitoring Year 2 photos at both the 16 vegetation plot proference points and the eight permanent photo reference points did not reveal any concerns, problems, or negative trends. No vegetation problem areas were observed or documented during the project-wide visual assessment. Based on the positive results from the vegetative monitoring for Monitoring Year 2 at RFC, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

Tributary to Reedy Fork Creek Stream Restoration Annual Monitoring Report (Year 3 of 5) December 2010

Between late September and early October 2010, the vegetation monitoring for Monitoring Year 3 was conducted. Monitoring Year 3 stem counts were documented and the survivability calculated from the Monitoring Year 2 totals following replanting. Monitoring Year 3 showed that the counts for the 16 vegetation plots ranged from 377 to 769 stems per acre, with an average survivability of 596 stems per acre. These results indicate that the survivability of the planted woody vegetation at RFC have met the success criteria of achieving at least 320 stems per acre after three years and will likely meet the 260 stems per acre after five years at RFC. However, Mulkey is aware, through pedestrian surveys and visual observations, that at first glance some areas appear to be lacking woody species; however upon strict search, the planted trees are in fact present. The conditions at RFC have improved each year, with vegetation being one of the main contributors. Mulkey is confident that the vegetation will continue to improve as it slowly outcompetes some of the grasses, briers, and weeds in the coming years.

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology will be monitored to evaluate the success of stream restoration at RFC. The limits of the project stream reaches to be monitored at RFC were determined using the sampling rates outlined by the USACE et al. (2003). The monitoring involves using annual field surveys, pebble counts, crest gage recordation, visual assessment and photo Baseline conditions for comparison of the stream parameters to be documentation. monitored were established from data gathered immediately after construction through the as-built survey process. Longitudinal profiles and Modified Wolman pebble counts were conducted for all reaches and a total of seven permanent cross sections were surveyed and photo documented across RFC. A total of three crest gages across RFC were installed for hydrologic monitoring to verify the occurrence of bankfull storm events. Annual photo documentation was used for stream monitoring to complement and validate the other stream monitoring practices from eight permanent reference photo points. Annual project wide visual assessment was conducted using field observation and pedestrian surveys to identify any specific problem areas. This being the third year of monitoring, the BEHI information was collected as required during Monitoring Year 3 and Monitoring Year 5. Stream restoration success at RFC was evaluated by comparison of the annual monitoring results against those same parameters as predicted, specified, and required in the proposed design and as implemented during the construction process represented by the as-built or baseline conditions. Success was deemed achieved when all such comparisons reveal positive trends toward overall stream stability.

In late September 2008, the stream monitoring for Monitoring Year 1 was conducted using the methodologies described above. The results of the stream dimension, pattern, and profile monitoring demonstrated that all of the reaches were experiencing the expected minor adjustments indicative of movement toward increased stream stability and are attributed to vegetation establishment and natural channel adjustments. Fluctuations in bed materials were expected to occur during the early years following construction. Fining of the bed materials was documented by the stream bed material monitoring. Mulkey believes that this fluctuation was attributed to the deposition of finer bed materials (sands and silts) mobilized during construction and during subsequent storm events. Mulkey believes that the stream bed materials will coarsen as stream bank stability increases. These monitoring Annual Monitoring Report (Year 3 of 5)

results suggested that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material. Two of the three crest gages recorded flood stages in excess of the bankfull stage. The evidence recorded by the crest gages indicates that a storm event producing a stage in excess of the bankfull storm occurred at RFC during Monitoring Year 1. This documented the first of two required bankfull events over the five year monitoring period in order to achieve success with regards to hydrologic monitoring at RFC. No stream problems were documented through the photo documentation comparison process or through the conduction of the project-wide visual assessment along each of the project stream reaches. RFC experienced no stream problem areas and was deemed a success for Year 1 Monitoring.

Between early and mid-September 2009, the stream monitoring for Monitoring Year 2 was conducted using the methodologies described above. The results of the stream dimension, pattern, and profile monitoring demonstrated that all of the reaches were experiencing the expected minor adjustments indicative of movement toward increased stream stability and are attributed to vegetation establishment and natural channel adjustments. Fluctuations in bed materials were again documented. The Monitoring Year 2 results also suggest that onsite sediment supply from RFC is being greatly reduced as a result of the restoration. Both of the crest gages recorded flood stages in excess of the bankfull stage. The evidence recorded by the crest gages indicates that a storm event producing a stage in excess of the bankfull storm occurred again at RFC during Monitoring Year 2. This documented the second of two required bankfull events over the five year monitoring period in order to achieve success with regards to hydrologic monitoring at RFC. No stream problems were documented through the photo documentation comparison process or through the conduction of the project-wide visual assessment along each of the project stream reaches. RFC experienced no stream problem areas and was again deemed a success for Year 2 Monitoring.

Between late September and early October 2010, the stream monitoring for Monitoring Year 3 was conducted. Overall, the Monitoring Year 3 data illustrates a stream system reaching equilibrium in terms of projected adjustments in pattern, dimension, profile, substrate development, and bank stability. It can still be expected to see slight variations within the data set over the next two years of monitoring, but these will be most likely be attributed to inherent error in data collection and measurement and/or the natural tendencies of an active, dynamic system. The compilation of three years of monitoring data strongly suggest the RFC project has been successfully restored to a stable stream system in all stream related monitoring aspects.

Therefore, based on the positive results of both the vegetative and the stream monitoring for all monitoring to date at RFC, Mulkey does not propose any actions other than to proceed with the annual stream monitoring.

2.0 Project Background

2.1 **Project Location and Setting**

RFC located in Guilford County, North Carolina approximately five miles north of the Town of Gibsonville, approximately one half mile east of the intersection of NC Highway 61 and Sockwell Road (SR 2735) and immediately south of SR 2735 (Figure 1). RFC is situated in the Cape Fear River Basin 8-digit cataloging unit 03030002 and the 14-digit cataloging unit 03030002020070. Mulkey proposed to provide 7,000 Stream Mitigation Units (SMUs) with RFC under the Full Delivery RFP 16-D06028 issued by NCEEP. Mulkey acquired and installed permanent fencing along an easement covering 19.64 acres, which encompasses the streams and associated buffers at RFC.

2.2 **Project Goals and Objectives**

The primary goals of RFC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat.

These goals will be met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for approximately 7,511 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

2.3 **Project Restoration Approach and Mitigation Type**

RFC is comprised of three main reaches (R2-1, R2-2, R2-3) and four tributaries (R1, R2-4a, R2-4b, and R2-4c). Prior to construction, these seven reaches were identified and proposed for restoration due to their distinct stream characteristics and drainage areas. These seven existing reaches totaled approximately 7,093 linear feet. A total of approximately 7,511 linear feet of stream channel was restored at RFC within the 19.64-acre conservation easement.

Analyses, design, and restoration of the stream channels at RFC was accomplished using Natural Stream Channel design methods developed by Rosgen (Rosgen, D. L., 1994, 1996,

1998). The proposed Rosgen channel type for each the stream reaches was a C4 channel. A combination of Priority Level I and II methods were used to construct these reaches.

The most significant stream restoration component at RFC involved reconstruction of each of the stream reaches such that stream flows greater than bankfull are allowed to access the restored stream's floodplain. Two different approaches were used to ensure such floodplain access. The first approach involved relocating and raising the stream bed such that the historic floodplain is accessed by stream flows greater than bankfull (the sections of the project stream reaches that were restored using Priority Level I methodologies). A second approach was used where site constraints prevented such relocation and raising of the stream bed. The second approach involved building a floodplain at a level lower than the historic floodplain through the construction of bankfull benches (the sections of the project stream reaches that were restored using Priority Level II methodologies). In-stream structures were installed along each of the stream reached to provide grade control and stream bank protection, and to increase in-stream habitat diversity. The in-stream structures that were installed included rock cross vanes, j-hook rock vanes, rock vanes, constructed riffles, and root wads. Stream banks were further stabilized through the installation of coir fiber erosion control matting, temporary and permanent seeding, and the installation of native species vegetation in the form of transplants, live stakes, and bare root seedlings. All areas of the site that were disturbed during construction activities were stabilized using temporary and permanent seeding. The riparian and upland buffer communities along RFC were also restored with native species vegetation using a target community which will emulate the Piedmont/Low Mountain Alluvial Forest described by Shafale and Weakley (1990). The conservation easement was fenced to permanently protect the restored stream and buffer areas. Information regarding the restoration approach and mitigation type for each of the seven project stream reaches is detailed in Table 1.

2.4 **Project History**

The existing conditions at RFC prior to restoration were a result of cattle use for the past 50 years. When Mulkey initially became involved with this project, there were approximately 150 dairy cattle utilizing the pastures and directly accessing the stream channels. This continual livestock access to the streams resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and heavy siltation throughout RFC, as well as reduced water quality due to large quantities of fecal matter into the stream system. As a result of these land and water quality issues, Mulkey submitted RFC for the Full Delivery RFP 16-D06028 to provide 7,000 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the NCEEP and began work on the project on November 26, 2007. The project activity and reporting history are detailed in Table II. Table III lists the contacts for the designer, contractor, relevant suppliers, and monitoring firm for RFC. Table IV provides a complete listing of project background information.

2.5 **Project Monitoring Plan View**

Mulkey conducted as-built surveys along the entire length of each of the restored project stream reaches using total station survey equipment. These surveys were conducted in part to establish and document baseline conditions for the newly restored stream channels for future monitoring activities. Plan and profile drawings were developed using the results of the monitoring baseline surveys and subsequent yearly monitoring surveys. These drawing depicted the post construction condition of RFC with overlays of the yearly monitoring surveys which are included in Appendix A. The drawings consisted of plan sheets that include the following:

- Title sheet
- Legend sheet
- As-built planimetric drawings and profiles developed from the baseline monitoring field surveys

The drawings illustrate the location of all major project elements, including, but not limited to the:

- Restored stream channel thalweg, normal edges of water, constructed bankfull channel limits, and the constructed cut slope limits
- Conservation easement boundaries
- Permanent fencing limits
- Topography
- In-stream structures
- Photo points
- Crest gages
- Vegetation plots locations
- Permanent cross sections
- Project survey control
- Monitoring profile survey limits
- Relevant structures and utilities

3.0 Project Condition and Monitoring Results

3.1 **Project Vegetation Monitoring**

3.1.1 Vegetation Monitoring Methodology

The survivability of the planted vegetation at RFC, including both woody and herbaceous species, was monitored at representative vegetation plots as well as project-wide. Monitoring at representative vegetation plots focused primarily on planted woody vegetation and was conducted using stem counts and photo documentation. Project-wide monitoring of planted vegetation included both woody and herbaceous species and was accomplished using visual assessment as well as photo documentation.

Tributary to Reedy Fork Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

Major grading and channel construction was completed in mid-April 2008. Throughout construction, appropriate temporary and permanent seeding was conducted to stabilize areas disturbed during construction. Appropriate existing native species vegetation was also salvaged, where feasible, in the form of transplants and live stakes, throughout the construction process. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of March and April 2008, with all such planting being completed by mid-April 2008. These remaining plant materials consisted of native species bare root seedlings and live stakes and were installed, as appropriate, to restore the riparian and upland buffer communities along RFC within the conservation easement area. A complete listing of the planting zones, their corresponding acreages, and the corresponding vegetation species was included in the approved mitigation report (Mulkey Engineers and Consultants, 2008). The bare root stock were planted at a density of 680 stems per acre (eight foot by eight foot spacing) and the live stakes were planted on the stream banks at a density of 1,742 stems per acre (five foot by five foot spacing).

As-built surveys were initiated immediately following the installation of plant materials. In the period between March and May 2008, during the as-built surveys and after the completion of planting, a total of 16 representative vegetation plots (vegetation plots 1 through 16) were installed randomly across RFC. An iron pipe was installed at each plot corner for monumentation and a polyvinyl chloride (PVC) pipe, along with a label specifying the plot number, was also installed at one of the corners of each plot. The plot corners were strategically located such that each plot has a total area of approximately 100 square meters. Between April and May 2008, after the establishment of the plots, the species of each planted stem in each plot was identified. Each of these stems was then tallied, by species, and marked with loosely tied survey flagging (on lateral branches) to facilitate future identification. The survivability of the planted woody vegetation at RFC was monitored using annual stem counts at each of the plots. During the annual stem counts, the planted stems were re-flagged as required to ensure that all planted stems were accounted for and considered in the survivability calculations. In addition to the stem counts, photos were taken at each of the plots. Where necessary, the corner of each plot was remarked with the PVC pipe and the plot number relabeled. This PVC plot corner was used as the reference point from which the annual vegetation plot photos were taken such that the photos at each plot will have the same orientation. The photos were compared to the photos from the previous years to validate and document vegetation success. In addition to the photo reference points established at each of the vegetation plots, a total of eight additional permanent photo reference points were installed across RFC. These photo reference points were monumented using steel rebar and PVC pipe and were used for additional photo documentation of vegetation growth across RFC. Photos were taken from each of the eight permanent photo reference points with the same orientation each year and used for photo documentation and annual comparison of the vegetation growth across RFC. This exercise helped to further validate and document vegetation success at RFC. Between April and May 2008, after installation of the described eight photo reference points, photos were taken from each of the photo reference points to document the baseline conditions at RFC with regards to planted vegetation. Project-wide visual assessment was also used for vegetation monitoring at RFC. A visual assessment was conducted using annual field observation and

pedestrian surveys to identify any specific vegetation problem areas at RFC during the monitoring period. Any problem areas where vegetation was lacking or exotic vegetation occurred, was identified and categorized as bare bank, bare bench, bare floodplain, or invasive population. Such areas were documented using representative photos and their locations mapped on the plan view in Appendix A.

3.1.2 Vegetation Monitoring Success Criteria

Vegetation success at RFC will be measured by stem survivability. Survivability was based on achieving at least 320 stems per acre, the rate required to be present during Year 3 Monitoring. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification. As described above, photo documentation and visual assessment was used to complement the stem counts as part of the vegetation monitoring protocol at RFC. If during any given year, the planted species are not anticipated to meet final criteria established for vegetation, supplemental plantings are to be considered. In the event that this occurs, a remedial planting plan will be developed that achieves the survivability goals established for Years 3 and 5.

3.1.3 Vegetative Monitoring Results for Year 1 of 5

In late September 2008, the vegetation monitoring for Monitoring Year 1 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 1. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. Photos were taken from the photo reference points at each of the 16 vegetation plots with the initial baseline photos taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken from each of the eight permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the initial baseline photos taken from the original eight permanent photo reference points. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

The results of the Monitoring Year 1 stem counts showed that the counts for the 16 vegetation plots ranged from 121 to 972 stems per acre, with an average survivability of 478 stems per acre. These results indicated that the survivability of the planted woody vegetation at RFC may not meet the success criteria of achieving at least 320 stems per acre after three years and 260 stems per acre after five years at RFC. Based on the results of the stem counts, supplemental plantings of bare root seedlings were recommended to be conducted by Mulkey during the 2008 – 2009 planting season to ameliorate any deficiencies. The comparisons of the baseline and Monitoring Year 1 photos at both the 16 vegetation plot photo reference points and the eight permanent photo reference points did not reveal any concerns, problems, or negative trends. No vegetation problem areas were observed or documented during the project-wide visual assessment. No significant volunteer woody species were observed at any of the 16 vegetation plots. Beyond the

supplemental plantings, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.4 Vegetative Monitoring Results for Year 2 of 5

Mulkey conducted the recommended supplemental plantings of bare root seedlings in late winter 2008. These supplemental plantings were conducted only at the areas of the site where the most mortality was observed. Between early and mid-September 2009, the vegetation monitoring for Monitoring Year 2 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 2. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. Photos were taken from the photo reference points at each of the 16 vegetation plots. Appendix B compares these photos with the initial baseline photos taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken from each of the eight permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original eight permanent photo reference points. A projectwide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

Subsequent to the described replanting, the results of the Monitoring Year 2 stem counts showed that the counts for the 16 vegetation plots ranged from 504 to 972 stems per acre, with an average survivability of 697 stems per acre. These results indicated that the survivability of the planted woody vegetation at RFC should meet the success criteria of achieving at least 320 stems per acre after three years and 260 stems per acre after five years at RFC. The comparisons of the baseline, Monitoring Year 1, and Monitoring Year 2 photos at both the 16 vegetation plot photo reference points and the eight permanent photo reference points did not reveal any concerns, problems, or negative trends. No vegetation problem areas were observed or documented during the project-wide visual assessment. No significant volunteer woody species were observed at any of the 16 vegetation plots. Native species herbaceous vegetation was clearly observed to be flourishing at RFC in conjunction with the woody species vegetation. Both the woody and herbaceous vegetation are establishing well along the stream banks, with root mats for both clearly visible along the edges of water for the project stream reaches. Based on the positive results from the vegetative monitoring for Monitoring Year 2 at RFC, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.5 Vegetative Monitoring Results for Year 3 of 5

Between late September and early October 2010, the vegetation monitoring for Monitoring Year 3 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 3. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes initial stem counts through Monitoring Year 3 stem counts and the resulting survivability percentages. Photos Annual Monitoring Report (Year 3 of 5)

were taken from the photo reference points at each of the 16 vegetation plots. Appendix B compares the photos from the initial baseline photos through the Monitoring Year 3 taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken from each of the eight permanent photo reference points. Appendix C compares the photos from the initial baseline photos through the Monitoring Year 3 taken from the original eight permanent photo reference points. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

Monitoring Year 3 stem counts were documented and the survivability calculated from the Monitoring Year 2 totals following replanting. Monitoring Year 3 showed that the counts for the 16 vegetation plots ranged from 377 to 769 stems per acre, with an average survivability of 596 stems per acre. These results indicate that the survivability of the planted woody vegetation at RFC have met the success criteria of achieving at least 320 stems per acre after three years and will likely meet the 260 stems per acre after five years at RFC. The photo comparison of the baseline data through Monitoring Year 3 at the 16 vegetation plots, photo reference points, and the eight permanent photo reference points depict an established herbaceous vegetative layer dominating the landscape. Mulkey believes that by comparing the Year 2 and Year 3 photos, the herbaceous vegetation has reached its growth limit. This should allow the planted woody trees to become well established above the herbaceous vegetation and to continue their increased growth pattern. Mulkey is aware, through pedestrian surveys and visual observations, that at first glance some areas appear to be lacking woody species; however upon a strict search, the planted At this time, Mulkey does not propose any additional trees are in fact present. recommendations or actions other than to proceed with the annual vegetation monitoring.

3.2 **Project Stream Monitoring**

3.2.1 Stream Monitoring Methodology

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology will be monitored to evaluate the success of the stream restoration activities at RFC. The monitoring of stream dimension, pattern, and profile, or morphometric monitoring, along with the monitoring of stream bed material, was conducted using annual field surveys along with visual assessment. The morphometric, stream bed material, and stream bank stability monitoring was conducted along representative sections of the project stream reaches. Hydrologic monitoring consisted of field measurements of bankfull events using crest gages. Project-wide stream monitoring was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction were completed in mid-April 2008. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of March and April 2008. The asbuilt surveys of all of the stream reaches at RFC were initiated immediately following the installation of plant materials and were conducted utilizing total station surveys while following the protocols set forth by the 2003 USACE Stream Mitigation guidelines (USACE

Tributary to Reedy Fork Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

et al., 2003). In addition to documenting the construction of RFC for comparison to the proposed design, the results of the as-built surveys were also used to establish baseline morphology for the proposed monitoring. This information is presented in Table VII. A summary of the restored stream channel lengths are outlined in Table I. A complete set of As-Built Drawings including a monitoring plan view and longitudinal profile for the as-built conditions of the restored channels can be found in Appendix A. After the completion of the as-built surveys, the limits and corresponding lengths of the project stream reaches to be monitored at RFC were determined using the sampling rates outlined by the USACE *et al.* (2003). A total of 3,060 linear feet of all restored stream channels are surveyed annually during the monitoring period. This amount satisfies the 3,000 linear feet required minimum. Based on these the sampling rates, the limits of the project stream reaches to be surveyed annually for monitoring are as follows:

Reach R1 – 600 Linear Feet Total (Stations 0+00-R1- through 6+00-R1-) Reach R2-2 – 453 Linear Feet Total (Stations 18+43-R2- through 22+96-R2-) Reach R2-3 – 1,633 Linear Feet Total (Stations 2+10-R2- through 18+43-R2-) Reach R2-4a – 174 Linear Feet Total (Stations 0+36-R2- through 2+10-R2-) Reach R2-4b – 100 Linear Feet Total (Stations 0+31-R2-4b- through 1+31-R2-4b-)

Reach R2-4c – 100 Linear Feet Total (Stations 0+00-R2-4c- through 1+00-R2-4c-)

The upstream and downstream limits of these reaches were monumented in the field using steel rebar/PVC pin. Each pin was also labeled with an aluminum tag identifying the respective reach and the correct descriptor ("begin" or "end").

A total of seven permanent cross sections, consisting of both riffles and pools, were established across RFC and surveyed during the as-built surveys. The number of cross sections was determined using the sampling rates outlined by the USACE et al. (2003). The left and right ends of each cross section were monumented with a steel rebar pin and PVC pipe. An aluminum tag identifying the cross section number was also installed at the pin on the left side of the channel. In addition to the cross section surveys, photos were taken at each of the seven cross sections, looking across the stream from left to right, to document the baseline conditions at each respective cross section. Specific stations along each permanent cross section were established during the as-built surveys to promote replication and consistency during the subsequent annual cross section surveys. The stationing for each cross section was established to always begin on the left side of the channel, facing downstream, at the left rebar/PVC pin, and to continue across the stream channel to the rebar/PVC pin on the right side. The as-built surveys of the seven cross sections established the baseline conditions with regards to stream dimension. All of the seven cross sections are surveyed each year during the five-year monitoring period and the resulting parameters are compared annually. The parameters to be monitored include bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. Photos were taken annually at each of the seven cross sections, with the same orientation, looking across the stream from left to right and were compared annually to the photos from the previous year(s) to document stream condition at each respective cross section.

The pattern for all of the stream reaches was surveyed and baseline conditions were established as part of the as-built surveys. Monitoring surveys for stream pattern will be limited to the project stream reaches specified above for annual monitoring surveys. The stream pattern parameters resulting from the annual monitoring surveys will include sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. These parameters are compared annually.

The as-built surveys included longitudinal profile survey along the entire length of all restored stream reaches. Longitudinal profiles were surveyed by identifying each stream feature (riffle, run, pool, or glide) and surveying specific points at each feature. These specific locations included top of bank, bankfull, water's edge or surface, and thalweg. The as-built surveys were used to establish the baseline conditions with regards to longitudinal profile. The longitudinal profiles surveys conducted each year are limited to the project stream reaches specified above for annual monitoring surveys. The parameters resulting from the yearly surveys of the longitudinal profile are compared on an annual basis. The parameters to be monitored include bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing.

During the as-built surveys, Modified Wolman pebble counts were conducted at each of the project stream reaches to classify the stream bed materials. The pebble counts for the larger project stream reaches (R2-2 and R2-3) were conducted at each of the permanent cross sections by performing an equal number of counts at each cross section and then combining the results into a reach-wide count. These larger reaches were sampled at a minimum rate of 25 counts per cross section such that a minimum of 100 counts were made for each of the larger reaches. Reach-wide pebble counts were conducted along the smaller project stream reaches (R1, R2-4a, R2-4b, and R2-4c). A minimum of 100 counts were made for each of these smaller reaches. The stream bed materials are monitored at RFC by repeating these same pebble count procedures on an annual basis. The results of the pebble counts for each specified project stream reach are compared on an annual basis.

BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information served as baseline data for stream bank stability at RFC. Stream bank stability monitoring using these parameters was required in Monitoring Year 3 and will be again in Year 5. Data collected during these years were compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both the stream bank erosion rates and sediment transport rates at RFC are expected as a result of restoration and will be documented as described to demonstrate success.

During the as-built surveys, a total of three crest gages were installed across RFC, with two along Reach R2 and one at Reach R1. At the base of each crest gage a permanent vertical datum was installed. The locations of each crest gage along with the elevation of the permanent vertical datum were surveyed during the as-built surveys. The crest gages were used for the hydrologic monitoring at RFC to verify the occurrence of bankfull storm events. Each crest gage was set during its initial installation and baseline photos were taken. The

crest gages were checked annually and the flood stage(s) recorded by each gage and measured relative to the permanent vertical datum of the respective gage. The results of these measurements were used to document the occurrence of significant storm events, with the goal of specifically documenting the occurrence of bankfull and larger stream flow events.

Photo documentation and project-wide visual assessment were used for stream monitoring at RFC to complement the other stream monitoring practices. A total of eight permanent reference photo points were installed across RFC during the as-built surveys. These photo points were monumented using steel rebar/PVC pins. Photos were taken at that time to provide photo documentation of baseline stream conditions. Photos were taken from each of the eight permanent photo reference points with the same orientation each year and were used for photo documentation and annual comparison of the stream conditions across RFC. This exercise helped to further validate and document stream restoration success at RFC. The visual assessment was conducted using annual field observation and pedestrian surveys to identify any specific problem areas along the streams at RFC during the monitoring period. Any such problem areas were identified and organized under appropriate categories. Such areas were documented using representative photos, where applicable, and their locations mapped on the plan and profile sheets located in Appendix A. The suspected cause and appropriate remedial action for each problem was determined. If during any given year, the streams are not anticipated to meet the final established monitoring criteria, corrective actions are to be considered. Such modifications are to be documented and discussed with NCEEP.

3.2.2 Stream Monitoring Success Criteria

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology was monitored annually for the project stream reaches as described in detail above. Stream restoration success at RFC was evaluated by comparison of those annual results against those same parameters as predicted, specified, and required in proposed design. Success was achieved when all such comparisons reveal positive trends toward overall stream stability. The stream monitoring results should show that the stream channels at RFC are of the proposed stream channel type (Rosgen 1994).

Stream dimension parameters including bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius were measured and/or calculated for each of the permanent cross sections. The described dimension parameters are expected to remain consistent from year to year and should fall within the ranges established by the original proposed design parameters. It is expected and acceptable that minor adjustments in dimension will occur such as the development of point bars and the subsequent deepening of pools. As vegetation becomes established and the stream banks are stabilized, the anticipation is that the width depth ratios will decrease and the entrenchment ratios will increase slightly, both within the normal ranges for C and E stream channel types (Rosgen, 1994).

Tributary to Reedy Fork Creek Stream Restoration

Stream pattern parameters including sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio were measured and/or calculated. Stream pattern measurements are expected to remain consistent from year to year and to fall within the originally proposed design parameters. As vegetation becomes established and the stream banks are stabilized, it is anticipated that the sinuosity of the streams will also adjust, likely becoming more sinuous with time.

Stream longitudinal profile parameters including bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing were measured. Longitudinal profiles parameters are expected to remain relatively consistent from year to year. The stream profiles should not show aggrading or degrading conditions during the five-year monitoring period, however, minor profile adjustments such as deepening of pools is expected.

Stream bed material was monitored using the described Modified Wolman pebble counts. The success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely occur during the early years following construction and several years may be needed to observe a consistent bed material. Bed materials should ultimately reflect the proposed design conditions for each reach at RFC.

Stream bank stability was monitored using BEHI and sediment transport estimates during Monitoring Years 3 and again in Year 5. Data collected during these years will be compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both stream bank erosion rates and sediment transport rates at RFC are expected as a result of restoration and will be documented as described to demonstrate success.

Hydrologic monitoring success was based on the ability to document the occurrence of bankfull storm events at RFC. A minimum of two bankfull events, each occurring in two separate monitoring years, are required to be documented within the five-year monitoring period. The described crest gauges were used to determine and document the occurrence of these bankfull events.

As described above, photo documentation and visual assessment were used to complement the other stream monitoring practices as part of the stream monitoring protocol at RFC. If during any given year, the streams are not anticipated to meet the final established monitoring criteria, corrective actions will be considered. Such modifications will be documented and discussed with NCEEP.

3.2.3 Stream Monitoring Results for Year 1 of 5

In late September 2008, the stream monitoring for Monitoring Year 1 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 1. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described

in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments including decreasing width to depth ratios, increasing entrenchment ratios, and minor increases in depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the Year 1 Monitoring cross section photos to the as-built cross section photos strongly complemented these suggestions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included slightly increasing radius of curvature in various locations, indicative of movement toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments, including deepening of pools. The comparison of the baseline and Monitoring Year 1 longitudinal profiles did not show excessive aggrading or degrading.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII. Fluctuations in bed materials were expected to occur during the early years following construction. This expectation was observed in comparing the results of the baseline and Monitoring Year 1 pebble counts. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. Mulkey believes that this fluctuation is attributed to the deposition of finer bed materials (sands and silts)

Annual Monitoring Report (Year 3 of 5)

mobilized during construction that have been subsequently deposited during storm events. At this time, Mulkey still believes that the stream bed materials will coarsen as stream bank stability increases with additional vegetation establishment and as the finer bed materials are concurrently flushed through the stream systems at RFC. The monitoring results suggested that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at RFC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the three crest gages were checked during the Monitoring Year 1 surveys to monitor hydrology at RFC. Wrack lines were observed well above the bankfull stage across RFC during the Monitoring Year 1 surveys, suggesting that a flood event in excess of the bankfull event. One of the crest gages along Reach R2 was apparently washed away during this flood event. The two remaining crest gages (one each at Reach R1 and Reach R2) recorded flood stages in excess of the bankfull stage. Both of the remaining crest gages were reset after checking stage measurements to record future events. Table X lists the information related to the verification of bankfull events at RFC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at RFC during Monitoring Year 1. This was further validated through conversations with the land owner, Mr. George Teague, as he noted he had not seen a flood event of that magnitude in decades. This documentation of the first bankfull event at RFC during the monitoring period suggests success with regards to hydrologic monitoring at RFC.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 1 stream monitoring practices. Photos were taken from each of the eight permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos with the initial baseline photos taken from the eight permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. Table XII presents the findings of no stream problem areas. Based on the results of the stream monitoring for Monitoring Year 1 at RFC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.4 Stream Monitoring Results for Year 2 of 5

Between early and mid-September 2009, the stream monitoring for Monitoring Year 2 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 2. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. The comparison of the baseline condition along with the Monitoring Years 1 and 2 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments to the width to depth ratios, entrenchment ratios, and depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2 cross section photos strongly complemented these conclusions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool-to-pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2 longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. The comparison of the baseline condition, Monitoring Year 2 longitudinal profiles did not show excessive aggrading or degrading.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII. The comparison of the results of the pebble counts for Monitoring Year 1 and Monitoring Year 2 showed varied fluctuation of the bed material d50 and d84 along the sampled project stream reaches. Most of these fluctuations were slight. The bed material d50 fined or decreased slightly for project stream reaches R2-4a, R2-4b, R2-2, and R2-3; coarsened or increased slightly for project stream reach R2-4c; and remained the same for project stream reach R1. The bed material d84 fined or decreased for project stream reaches R1, R2-2, R2-3, R2-4a, and R2-4c; and coarsened or increased for project stream reach R2-4b. During the pebble counts, Mulkey noted that herbaceous vegetation is thriving in the subject stream reaches. This vegetation appears to be catching finer bed materials such that the actual stream bed is overlain with a thin layer of vegetation, root mass, and trapped finer materials. Upon further observation, coarser bed materials not reflected in the described pebble counts could be found directly under the layer of organics and trapped finer bed materials. Mulkey believes that this is the reason for the fining of the bed material reflected by the pebble counts for some reaches. The monitoring results continue to suggest that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as these monitoring practices are scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at RFC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Both of the crest gages (one each at Reach R1 and Reach R2) were checked during the Monitoring Year 2 surveys to monitor hydrology at RFC. Deposition was observed above the bankfull stage across RFC during the Monitoring Year 2 surveys, suggesting that a flood event in excess of the bankfull event. Both of the crest gages recorded flood stages in excess of the bankfull stage. Both of the crest gages were reset after checking stage measurements to record future events. Table X lists the information related to the verification of bankfull events at RFC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at RFC during Monitoring Year 2. Documentation of the second bankfull event at RFC during the monitoring period suggests success with regards to hydrologic monitoring at RFC and also satisfies the requirement that a minimum of two bankfull events, each occurring in two separate monitoring years, be documented within the five-year monitoring period.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 2 stream monitoring practices. Photos were taken from each of the eight Annual Monitoring Report (Year 3 of 5)

permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. Table XII presents the findings of no stream problem areas. As noted in the vegetation monitoring section above, root mats for both the woody and herbaceous vegetation are clearly visible along the edges of water for the project stream reaches. Such vegetation growth is contributing greatly to the restoration of stream stability at RFC. The smaller reaches (R1, R2-4 a, b, and c) have shown tremendous success with their reconnection to the floodplain. As a result, vigorous establishment of herbaceous wetland vegetation is occurring within the riparian buffers along these reaches. Given the relative small capacity of these streams, the described vegetation has begun to encroach into the stream channel, creating the elevation difference noticeable in reaches R1 and R2-4c. Additionally, the increased roughness created by the vegetation in the channel allows for some of the upstream sediment to accumulate within the vegetation mats. Reach R2-4a is an example of where this activity has occurred. The denuded upstream channel (off-site) offers a sediment source and the establishing vegetation is trapping the finer materials creating a bed for the next layer of vegetation. Reach R2-4b was influenced similarly by the encroaching vegetation, but not to the same degree as the other reaches. Given that there are no areas of scour, bare banks, or sparse vegetation, Mulkey believes this aggradation does not imply future stability problems. Actually, the vegetation responsible for the aggradation is contributing to increased grade control, channel stability, and providing exceptional instream habitat. It is Mulkey's belief that over time, woody vegetation will out compete the current herbaceous vegetation, and the channel will begin to show a trend back towards the originally restored conditions. Other field observations made during the Monitoring Year 2 include the presence of large minnows and/or small fish in the deeper restored pools. Fish of this size and number had not been previously observed at RFC by Mulkey pre or post construction. Based on the positive results of the stream monitoring for Monitoring Year 2 at RFC, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.5 Stream Monitoring Results for Year 3 of 5

Between late September and early October 2010, the stream monitoring for Monitoring Year 3 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 3. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 3 with all previous photos at each of the seven cross sections.

Appendix E provides an overlay of the Monitoring Years 1, 2 and 3 as well as baseline conditions, along with the raw data for each cross section.

The comparison of the stream dimension data between the baseline conditions and Monitoring Years 1, 2, and 3 for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments to the width to depth ratios, entrenchment ratios, and depth. Each of these trends was indicative of movement toward increased stream stability with the primary contributors being well established vegetation (root mass) and natural channel adjustments. The cross section photo comparisons of the baseline conditions with Monitoring Years 1, 2, and 3 further support these conclusions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and to determine meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline condition with the stream pattern data for Monitoring Years 1, 2, 3 for each of the project stream reaches showed positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches have experienced minor adjustments attributed to vegetation establishment and natural channel adjustments. Some of the fluctuations in the data can also be attributed to the standard deviation associated with human error in data collection and measurement. Overall the data suggest the reaches are beginning to reach equilibrium in the pattern measurements which would be attributed to the streams reaching stability. Noteworthy outliers in the data can be found in low belt widths, however these specific measurements occur where the valley takes a significant turn thus compromising the measurement methodology. In the field, each of these areas are showing stability in the visual assessment and other pattern measurements.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool-to-pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. Comparisons of the longitudinal profiles for the baseline conditions and Monitoring Years 1, 2, and 3 for each of the monitored project stream reaches fell within the ranges for each parameter as set forth by the design. Comparisons of the baseline data and results up to Monitoring Year 3 did not show excessive aggrading or degrading. Overlays for the longitudinal profiles can be found in Appendix E along with the raw data for Monitoring Year 3.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII, while overlays of the percent accumulation graphs for the baseline conditions through Monitoring Year 3 are shown in Appendix E. Raw data for Monitoring Year 3 can be found behind each respective graph.

Annual Monitoring Report (Year 3 of 5)

The comparison of the results of the pebble counts for Monitoring Year 2 and Monitoring Year 3 showed varied fluctuation of the d50 and d84 bed material along the sampled project stream reaches. Most of these fluctuations were significant in that they moved toward the original designed substrate size. The d50 bed material coarsened significantly for project stream reaches R1, R2-3, R2-2, and R2-4b, which now closely resembles the designed (proposed) substrate. The d50 bed material slightly coarsened for the project stream reach R2-4a and actually decreased or fined for R2-4b. The d84 bed material coarsened for project stream reaches R1, R2-2, R2-3, and R2-4a. The d84 bed material decreased or fined for R2-4b and R2-4c. As mentioned in Monitoring Year 2, Mulkey noted that herbaceous vegetation was thriving in the areas containing R2-4a, b, and c. This vegetation coupled with the degraded channel upstream of R2-4b could attribute to the fining of this reach. R2-4c is spring fed and at this time appears the silt bed may become the stable bed material as large, purging storm flows are not experienced in this reach. As for the remaining streams, the coarsening of the bed was anticipated in the design parameters and the presence of the coarser substrate indicates stability is being reached and the finer materials left after construction are no longer present. The monitoring results continue to suggest that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and the complete monitoring period may be needed to observe a consistent bed material in all project reaches.

Stream bank stability monitoring was conducted as required for Monitoring Year 3 using BEHI and sediment transport estimates. The current steam bank stability results showed a significant reduction in sediment exports when compared with 2006 pre-construction estimates. The 2006 pre-construction sediment export values for RFC were originally estimated to be 445 tons per year. Monitoring Year 3 sediment export values for RFC currently show that 26.6 tons per year are currently leaving the site, which equates to 418.4 tons per year reduction in sediment export as depicted in Table IX. As outlined in the success criteria, monitoring of the stream bank stability will occur once again in Year 5 and the ultimate success of the project will then be determined.

Both of the crest gages (one each at Reach R1 and Reach R2) were checked during the Monitoring Year 3 surveys to monitor hydrology at RFC. Deposition was observed above the bankfull stage across RFC during the Monitoring Year 3 surveys, suggesting a flood event in excess of the bankfull stage. Accordingly, both of the crest gages recorded flood stages in excess of the bankfull stage. Both of the crest gages were reset after checking stage measurements to record future events. Table X lists the information related to the verification of bankfull events at RFC for Monitoring Year 3 while the raw data can be found in Appendix E. Documentation of the third bankfull event at RFC during the monitoring period suggests success with regards to hydrologic monitoring at RFC. This third bankfull event, in as many monitoring years, also exceeds the required minimum of two bankfull events to have occurred and be documented within the five-year monitoring period.

Tributary to Reedy Fork Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 3 stream monitoring practices. Photos were taken from each of the eight permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos between the baseline conditions through Monitoring Year 3. No stream problems were documented through the photo comparison process. A projectwide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. Table XII presents the findings of no stream problem areas.

Overall, the Monitoring Year 3 data illustrates a stream system reaching equilibrium in terms of projected adjustments in pattern, dimension, profile, substrate development, and bank stability. It can still be expected to see slight variations within the data set over the next two years of monitoring, but these will be most likely be attributed to inherent error in data collection and measurement and/or the natural tendencies of an active, dynamic system. The compilation of three years of monitoring data strongly suggest the RFC project has been successfully restored to a stable stream system in all stream related monitoring aspects including the established vegetation success criteria. Since the project is progressing in a positive direction, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

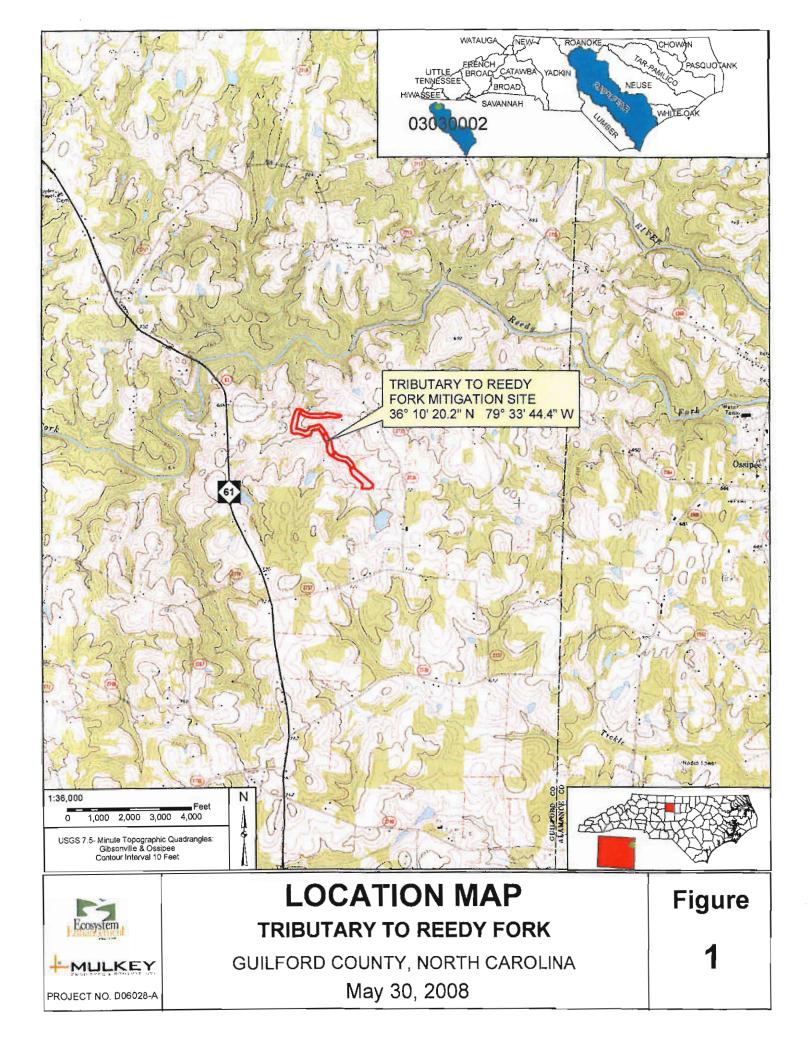
4.0 **Project Monitoring Methodology**

Success criteria for stream mitigation sites are based on guidelines established by the USACE, US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and the NCDWO (USACE et. al, 2003). These guidelines establish criteria for monitoring both hydrologic conditions and vegetation survival. These same guidelines were used to develop the monitoring methods, frequencies, and success criteria discussed herein for RFC and further described in detail in the approved mitigation report (Mulkey Engineers and Consultants, 2008). RFC site conditions will be monitored annually during the latter part of the growing season months (August, September, and October) over the five-year monitoring period. This monitoring period complies with the requirements set fourth in the Full Delivery RFP 16-D06028. Monitoring results will be documented on an annual basis, with the associated reports submitted to the NCEEP as evidence that the established project goals and objectives are being achieved. The results of annual monitoring will be used to evaluate the degree of success RFC has achieved in meeting the said goals and objectives. In the event that goals are not being met, Mulkey will coordinate with the NCEEP to develop a plan for ameliorating the areas of concern.

5.0 References

Mulkey Engineers and Consultants. 2008. Tributary to Reedy Fork Creek Stream Restoration Mitigation Report. July 2008.

NCEEP. 2005. Content, Format, and Data Requirements for NCEEP Monitoring Reports. Version 1.1, September 16, 2005. NCDENR, NCEEP. 17 pp.


Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena, 22:169-199.

Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. 1998. The Reference Reach – A Blueprint for Natural Channel Design. From Proceedings of the Wetlands and Restoration Conference, March 1998, Denver CO. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health and Natural Resources.

USACE, USEPA, NCWRC, and NCDWQ. 2003. Stream Mitigation Guidelines. April 2003.

	Exhibit Table I. Project Restoration Approach and Mitigation Type Table Tributary to Reedy Fork Creek Stream Restoration / D06028-A													
Stream Reach ID		Mitigation Type	Original Channel Length (lf)	Restored Channel Length (lf)	Stream Mitigation Units (SMU)*	Comments								
R 1	P1/P2	R	1,409	1,632	1,600	Includes both P1 (connection to historic floodplain) and P2 (channel relocation with floodplain excavation)								
R2-1	P2	R	906	819	819	P2 (channel relocation with floodplain excavation)								
	P1/P2	P1/P2 R		853	853	Includes both P1 (connection to historic floodplain) and P2 (channel relocation with floodplain excavation)								
R2-2	P2	EII	2,522	418	167	Includes both P2 (channel relocation with floodplain excavation) and EII								
	P1/P2	R		1,273	1,213	Includes both P1 (connection to historic floodplain) and P2 (channel relocation with floodplain excavation)								
R2-3	P2	R	1,584	1,771	1,741	P2 (channel relocation with floodplain excavation)								
R2-4a	P2	R	289	231	195	P2 (channel relocation with floodplain excavation)								
R2-4b	P2	R	226	307	276	P2 (channel relocation with floodplain excavation)								
R2-4c	P2	R	157	208	208	P2 (channel relocation with floodplain excavation)								
		Totals	7,093	7,512	7,072									

* Stream Mitigation Units do not include restored channel outside of easement and within crossings.

R = RestorationP1 = Priority IEII = Enhancement IIP2 = Priority II

Exhibit Table II. Project Activity and Reporting History										
Tributary to Reedy Fork Creek Stream	n Restoration	/ D06028-A								
Activity or Report	Scheduled Completion	Data Collection Completion	Actual Completion or Delivery							
Restoration Plan Prepared	Dec-06	Oct-06	10-Jul-07							
Restoration Plan Approved	Jan-07	N/A	30-Jul-07							
Final Design - 90%	Feb-07	N/A	10-Aug-07							
Construction	Aug-07	N/A	14-Apr-08							
Temporary S&E mix applied to entire project area	Aug-07	N/A	14-Apr-08							
Permanent seed mix applied to entire project area	Aug-07	N/A	14-Apr-08							
Planting live stakes	Dec-07	N/A	14-Apr-08							
Planting bare roots	Dec-07	N/A	14-Apr-08							
End of Construction	Dec-07	N/A	14-Apr-08							
Survey of As-built conditions (Year 0 Monitoring - Baseline)	Jan-08	May-08	28-May-08							
Monitoring										
Year 1 - 2008	Dec-08	Sep-08	Dec-08							
Year 2 - 2009	Dec-09	Sep-09	Nov-09							
Year 3 - 2010	Dec-10	Oct-10	Dec-10							
Year 4 - 2011	Dec-11	N/A	N/A							
Year 5 - 2012	Dec-12	N/A	N/A							

Bolded items represent those events or deliverables that are variable. Non-bolded items

represent events that are standard components over the course of a typical project.

	Exhibit Table III. Project Contacts										
	ibutary to Reedy Fork Cree	ek Stream Restoration / D06028-A									
Designer											
		6750 Tryon Road									
	key Engineers	Cary, NC 27518									
and (Consultants	Contact:									
		Emmett Perdue, PE Tel. 919.858.1874									
Construction Contra	actor										
		P.O. Box 796									
Vaug	ghan Contracting, LLC	Wadesboro, NC 28170									
		Contact:									
		Tommy Vaughan Tel. 704.694.6450									
Planting Coordinate	or										
		150 Black Creek Road									
Brute	on Nurseries and Landscapes	Fremont, NC 27830									
		Contact:									
		Charles Bruton, Jr. Tel. 919.242.6555									
Seeding Contractor											
		P.O. Box 796									
Vaug	ghan Contracting, LLC	Wadesboro, NC 28170									
		Contact:									
		Tommy Vaughan Tel. 704.694.6450									
Seed Mix Sources											
		P.O. Box 669									
Ever	green Seed	Willow Spring, NC 27592									
		Contact:									
		Wister Heald Tel. 919.567.1333									
Nursery Stock Supp	liers										
		762 Claridge Nursery Road									
Nort	h Carolina Forestry Service	Goldsboro, NC 27530									
	idge Nursery	Contact:									
	- •	James West Tel. 919.731.7988									
Monitoring Perform	ners										
_		6750 Tryon Road									
Mull	key Engineers	Cary, NC 27518									
	Consultants	Contact:									
		Emmett Perdue Tel. 919.858.1874									

Exhibit Table IV. Project Backgro Tributary to Reedy Fork Creek Stream Restora	ntion / D06028-A
Project County	Guilford County, North Carolina
Drainage Area [sq. mi(acres)]	
R1	0.028 (17.71)
R2-1	0.92 (591.5)
R2-2	0.51 (326.1)
R2-3	0.33 (210.9)
R2-4a	0.09 (55.7)
R2-4b	0.09 (55.7)
R2-4c	0.09 (55.7)
Drainage Impervious cover estimate (%)	
R1	2
R2-1	2
R2-2	2
R2-3	2
R2-4a	2
R2-4b	2
R2-4c	2
Stream Order	
R1	1
R2-1	2
R2-2	2
R2-3	2
R2-4a	1
R2-4b	1
R2-4c	1
Physiographic Region	Piedmont
Ecoregion	Southern Outer Piedmont
Rosgen Classification (As-built)	•
R1, R2-1, R2-2, R2-3, R2-4a, R2-4b, R2-4c	C4
Cowardin Classification	R3UB3 [*]
Dominat Soil Types	Enon-Mecklenburg
Reference Site ID	UT to Wells Creek
USGS HUC for Project and Reference	
Project	03030002
Reference	03030002
NCDWQ Sub-basin for Project and Reference	
Project	03-06-02 (Cape Fear)
Reference	03-06-04 (Cape Fear)
VCDWQ Classification for Project and Reference	
Project	C NSW
Reference	C NSW
Any portion of any project segement 303d?	Yes
Any portion of any project segment upstream of a 303d listed segment?	Yes
Reasons for 303d listing or stressor	Imparied Biological Integrity
Percent of project easement fenced	100

 $^{*}(R)$ Riverine (3) Upper Perennial (UB) Unconsolidated Bottom (3) Cobble-Gravel

					I	Exhibi						oring Y reek S					rranged)28-A	by Plot				
Species	1	2	3	4	5	6	7		ots 9	10	11	12	13	14	15	16	Initial Totals	Initial Totals Adjusted ^A	Year 1 Totals	Year 2 Totals ^B	Year 3 Totals	Survival % C
Shrubs																						
Cornus amomum																	1	1	1	1	0	0%
Trees																				•		
Betula nigra		7	4			1	1	4	3	2	1			3	1	1	24	23	17	29	28	97%
Diospyros virginiana		2		1			2				3	1	5		3		25	26	17	21	17	81%
Juglans nigra	6				3		1	1			2	4	3	1			0	0	0	28	21	75%
Pinus echinata		1		1									2				19	15	6	5	4	80%
Pinus strobus				2								2		1			14	14	4	8	5	63%
Pinus virginiana				1									1	1			11	15	8	4	3	75%
Prunus serotina																	4	4	0	0	0	NLE
Plantanus occidentalis				1	3		3			3	4			3	7	7	0	0	0	32	31	97%
Quercus alba	2	2		2					1		6	4			3	1	20	23	17	23	21	91%
Quercus falcata														1		1	32	45	25	2	2	100%
Quercus michauxii			3	3	1	1	1	2	5	4			3	3	3	4	28	32	28	38	33	87%
Quercus nigra		1		1	1	9		9	5	4		1					52	37	24	38	31	82%
Quercus phellos	11	1	5	2	4	5	1	3		4	1				1		62	57	40	45	38	84%
Salix nigra									2								2	2	2	2	2	100%
Totals	19	14	12	14	12	16	9	19	16	17	17	12	14	13	18	14	294	294	189	276	236	86%
													Sten	ns Per Acre Sur	nmary							
Plot Acreage	0.025	0.025	0.025	0.025	0.025	0.025	0.024	0.025	0.025	0.025	0.025	0.025	0.024	0.026	0.025	0.025	Min	Ave	Max			
Stems/Acre	763.1	569.1	489.8	557.8	481.9	645.2	376.6	769.2	653.1	693.9	677.3	483.9	573.8	503.9	725.8	564.5	377	596	769			

^A "Initial Totals Adjusted" represents the most accurate species occurrence, following corrections for misidentification and other issues during the initial counting process.

^B "Year 2 Totals" represents the current species totals (100% survival) following replanting in Year 1 (2008).

^C "Survival %" represents the Year 3 Totals compared to the Year 2 Totals.

NLE - This species no longer exists within the permanent monitoring vegetation plots.

Exhibit Table VI. Vegetative Problem Areas Triburary to Reedy Fork Creek Stream Restoration / D06028-A											
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)								
No problem areas observed in Year 3 (2010)	All project reaches	N/A	N/A								
No problem areas observed in Year 2 (2009)	All project reaches	N/A	N/A								
Site replanted late winter 2009 following Year 1 (2008) due to mortality from drought	All project reaches	N/A	N/A								
Scattered bare root planting mortality in Year 1 (2008)	All project reaches	Drought	N/A								

						Fork (Creek S		Restor	ydrauli •ation /		-						
PARAMETERS	USGS Gage Data			Region	al Curve	Interval	Pre-Existing Condition			Project Reference Stream				Design		As-built		
Dimension - Riffle	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)							3.0	8.1	5.6	6.2	8.6	7.2			6.9	7.0	9.1	8.0
Floodprone Width (ft)							3.5	26.7	15.1	15.3	25.0	20.5	13.4	28.0	20.5	34.3	52.3	43.3
BKF Cross Sectional Area (sq. ft.)							3.2	7.8	5.5	3.9	6.3	5.4	-		4.0	3.8	4.4	4.1
BKF Mean Depth (ft)							0.97	1.06	1.01	0.56	1.02	0.79			0.58	0.49	0.54	0.52
BKF Max Depth (ft)							1.15	1.75	1.45	0.64	1.38	1.02	0.47	1.01	0.75	0.89	1.16	1.03
Width/Depth Ratio							2.9	8.4	5.6	6.1	12.6	9.1			12.0	12.9	18.5	15.7
Entrenchment Ratio							1.1	3.3	2.2	1.9	4.1	3.0	1.9	4.1	3.0	3.8	7.5	5.7
Wetted Perimeter (ft)									7.59						8.1	7.5	9.3	8.4
Hydraulic Radius (ft)									0.73						0.49	0.47	0.50	0.49
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)										10.0	35.0	20.9	9.7	33.9	20.3	3.7	32.4	12.2
Radius of Curvature (ft)										2.3	31.8	13.5	2.2	30.8	13.1	7.1	26.0	14.7
Meander Wavelength (ft)										35.0	70.0	50.0	33.9	67.9	48.5	32.5	66.4	45.4
Meander Width Ratio										1.4	4.9	2.9	1.4	4.9	2.9	0.5	4.1	1.5
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)							9.1	67.7	38.4	2.5	25.4	13.8	2.4	24.7	13.4	2.3	10.8	5.2
Riffle Slope (ft/ft)							0.014	0.075	0.029	0.016	0.085	0.040	0.016	0.083	0.039	0.011	0.102	0.040
Pool Length (ft)							35.7	96.9	66.0	7.3	27.5	14.6	7.1	26.6	14.2	7.2	20.9	13.5
Pool Spacing (ft)							134.2	253.1	180.5	16.5	62.8	36.5	16.0	60.9	35.4	19.1	52.9	35.1
Substrate																		
d50 (mm)								1.1			6.2		1.1				4.9	
d84 (mm)								16.8			72.7			16.8			25.7	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0237			0.0199		0.0197				0.0198	
Channel Length(ft)								1409			496			1693			1632	
Valley Length (ft)								1311		352				1311			1311	
Sinuosity								1.07			1.41			1.29			1.24	
Rosgen Classification							De	egraded E	25b		C4/1		C4/1			C4/1		

		Ex		able V Itary to		Fork (Stream	Restor	•		-						
PARAMETERS	USC	GS Gage	Data	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project	Reference	e Stream		Design			As-built	
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)				7.0	27.0	14.0	10.6	11.4	11.0	6.2	8.6	7.2			15.8			15.8
Floodprone Width (ft)							48.9	50.6	49.8	15.3	25.0	20.5	30.5	64.0	46.7			66.1
BKF Cross Sectional Area (sq. ft.)				9.0	40.0	21.0	17.0	21.2	19.1	3.9	6.3	5.4			20.0			18.3
BKF Mean Depth (ft)				0.90	2.30	1.70	1.60	1.86	1.73	0.56	1.02	0.79			1.26			1.15
BKF Max Depth (ft)							1.75	2.47	2.13	0.64	1.38	1.02	1.03	2.22	1.64			1.94
Width/Depth Ratio							6.1	6.6	6.4	6.1	12.6	9.1			12.5			13.8
Entrenchment Ratio							4.4	4.6	4.5	1.9	4.1	3.0	1.9	4.1	3.0			4.2
Wetted Perimeter (ft)									14.5						18.3			16.7
Hydraulic Radius (ft)									1.32						1.09			1.09
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)							4.3	44.6	24.3	10.0	35.0	20.9	22.1	77.5	46.3	17.9	39.7	28.3
Radius of Curvature (ft)							19.8	54.3	33.8	2.3	31.8	13.5	5.1	70.4	29.9	24.2	85.6	41.1
Meander Wavelength (ft)							53.6	114.7	79.9	35.0	70.0	50.0	77.5	154.9	110.7	94.3	143.2	115.4
Meander Width Ratio							0.4	4.1	2.2	1.4	4.9	2.9	1.4	4.9	2.9	1.1	2.5	1.8
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)							9.0	104.8	38.4	2.5	25.4	13.8	5.6	56.3	30.5	6.2	11.6	9.6
Riffle Slope (ft/ft)							0.0078	0.0362	0.0169	0.016	0.085	0.040	0.005	0.028	0.013	0.003	0.031	0.017
Pool Length (ft)							14.2	75.5	36.7	7.3	27.5	14.6	16.2	60.8	32.4	20.2	36.4	26.7
Pool Spacing (ft)							44.34	165.18	97.35	16.5	62.8	36.5	36.6	139.0	80.8	38.0	82.9	64.6
Substrate																		
d50 (mm)								17.5			6.2			17.5			3.0	
d84 (mm)								81.3			72.7			81.3			19.3	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0067			0.0199			0.0074			0.0075	
Channel Length(ft)								906			496			802			819	
Valley Length (ft)								745			352			745			745	
Sinuosity								1.22			1.41			1.08			1.10	
Rosgen Classification							De	graded E	4/1		C4/1			C4/1			C4/1	

		Ex		able V tary to		Fork (Stream	Restor	÷		•						
PARAMETERS	USC	GS Gage	Data	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project	Reference	e Stream		Design			As-built	
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)				5.5	20.0	11.0	14.1	15.5	14.8	6.2	8.6	7.2			15.8	13.5	14.8	14.3
Floodprone Width (ft)							46.1	82.5	64.3	15.3	25.0	20.5	30.5	64.0	46.7	61.1	85.0	73.6
BKF Cross Sectional Area (sq. ft.)				6.0	28.0	15.5	19.6	21.6	20.6	3.9	6.3	5.4			20.0	14.5	17.6	15.7
BKF Mean Depth (ft)				0.75	2.00	1.40	1.27	1.53	1.40	0.56	1.02	0.79			1.26	0.99	1.31	1.03
BKF Max Depth (ft)							1.59	2.11	1.79	0.64	1.38	1.02	1.03	2.22	1.64	1.53	2.23	1.79
Width/Depth Ratio							9.2	12.2	10.7	6.1	12.6	9.1			12.5	10.3	14.8	13.3
Entrenchment Ratio							3.0	5.8	4.4	1.9	4.1	3.0	1.9	4.1	3.0	4.1	6.3	5.2
Wetted Perimeter (ft)									17.6						18.3	15.1	15.5	15.3
Hydraulic Radius (ft)									1.17						1.09	0.96	1.17	1.03
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)							10.3	94.8	39.6	10.0	35.0	20.9	22.1	77.5	46.3	14.3	65.6	33.4
Radius of Curvature (ft)							15.9	76.7	45.6	2.3	31.8	13.5	5.1	70.4	29.9	17.3	66.8	33.0
Meander Wavelength (ft)							73.2	238.2	139.3	35.0	70.0	50.0	77.5	154.9	110.7	79.1	133.5	107.8
Meander Width Ratio							0.7	6.4	2.7	1.4	4.9	2.9	1.4	4.9	2.9	1.0	4.6	2.3
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)							6.43	91.81	28.91	2.5	25.4	13.8	5.58	56.3	30.47	3.9	17.1	9.5
Riffle Slope (ft/ft)							0.009	0.040	0.020	0.016	0.085	0.040	0.008	0.041	0.019	0.006	0.041	0.018
Pool Length (ft)							6.8	119.7	46.0	7.3	27.5	14.6	16.2	60.8	32.4	15.3	69.9	34.7
Pool Spacing (ft)							35.3	343.6	143.8	16.5	62.8	36.5	36.6	139.0	80.8	37.2	99.6	63.5
Substrate																		
d50 (mm)								50.9			6.2			50.9			6.0	
d84 (mm)								152.5			72.7			152.5			29.1	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0092			0.0199			0.0094			0.0096	
Channel Length(ft)								2522			496			2490			2544	
Valley Length (ft)								2116			352			2116			2116	
Sinuosity								1.19			1.41			1.18			1.20	
Rosgen Classification							De	graded E	4/1		C4/1			C4/1			C4/1	

		Ex				Fork (Stream	Restor	Hydra ation /								
PARAMETERS	USC	GS Gage	Data	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project	Reference	e Stream		Design			As-built	
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)				4.5	18.0	9.0	4.2	4.4	4.3	6.2	8.6	7.2			10.0	10.6	10.6	10.6
Floodprone Width (ft)							7.8	32.7	20.3	15.3	25.0	20.5	19.3	40.5	29.5	78.5	78.7	78.6
BKF Cross Sectional Area (sq. ft.)				5.0	20.0	10.0	4.1	5.2	4.6	3.9	6.3	5.4			8.0	7.3	8.4	7.8
BKF Mean Depth (ft)				0.6	1.7	1.1	0.93	1.23	1.08	0.56	1.02	0.79			0.80	0.69	0.79	0.74
BKF Max Depth (ft)							1.11	1.76	1.35	0.64	1.38	1.02	0.65	1.40	1.04	1.19	1.34	1.27
Width/Depth Ratio							3.4	4.7	4.1	6.1	12.6	9.1			12.5	13.4	15.3	14.4
Entrenchment Ratio							1.8	7.8	4.8	1.9	4.1	3.0	1.9	4.1	3.0	7.4	7.4	7.4
Wetted Perimeter (ft)									6.5						11.6	10.9	11.1	11.0
Hydraulic Radius (ft)									0.71						0.69	0.67	0.76	0.72
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)							3.0	67.0	26.9	10.0	35.0	20.9	14.0	49.0	29.3	5.9	61.6	26.8
Radius of Curvature (ft)							12.2	76.6	30.7	2.3	31.8	13.5	3.2	44.5	18.9	14.9	64.7	24.8
Meander Wavelength (ft)							46.8	149.4	83.2	35.0	70.0	50.0	49.0	98.0	70.0	55.8	147.2	83.6
Meander Width Ratio							0.7	15.6	6.3	1.4	4.9	2.9	1.4	4.9	2.9	0.6	5.8	2.5
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)							4.3	42.3	18.7	2.5	25.4	13.8	3.5	35.6	19.3	5.5	15.2	8.9
Riffle Slope (ft/ft)							0.008	0.082	0.026	0.016	0.085	0.040	0.006	0.031	0.014	0.005	0.023	0.012
Pool Length (ft)							4.8	85.2	31.8	7.3	27.5	14.6	10.2	38.4	20.5	15.9	27.7	20.9
Pool Spacing (ft)							71.1	296.3	149.8	16.5	62.8	36.5	23.1	87.9	51.1	27.6	83.2	41.9
Substrate																		
d50 (mm)								0.2			6.2			0.2			6.5	
d84 (mm)								6.1			72.7			6.1			18.4	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0080			0.0199			0.0075			0.0073	
Channel Length(ft)								1584			496			1734			1771	
Valley Length (ft)								1291			352			1305			1305	
Sinuosity								1.23			1.41			1.33			1.36	
Rosgen Classification							D	egraded 1	E5		C4/1			C4/1			C4/1	

		Ex				Fork (Creek S		Restor	Hydra ation /								
PARAMETERS	USC	GS Gage	Data	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project	Reference	e Stream		Design			As-built	
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)										6.2	8.6	7.2			7.1			
Floodprone Width (ft)										15.3	25.0	20.5	13.6	28.6	20.9			
BKF Cross Sectional Area (sq. ft.)										3.9	6.3	5.4			4.0			
BKF Mean Depth (ft)										0.56	1.02	0.79			0.57			
BKF Max Depth (ft)										0.64	1.38	1.02	0.46	0.99	0.73			
Width/Depth Ratio										6.1	12.6	9.1			12.5			
Entrenchment Ratio										1.9	4.1	3.0	1.9	4.1	3.0			
Wetted Perimeter (ft)																		
Hydraulic Radius (ft)																		
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)										10.0	35.0	20.9	9.9	34.6	20.7	12.5	25.4	18.1
Radius of Curvature (ft)										2.3	31.8	13.5	2.3	31.5	13.4	12.1	28.2	18.3
Meander Wavelength (ft)										35.0	70.0	50.0	34.6	69.3	49.5	59.4	75.2	65.4
Meander Width Ratio										1.4	4.9	2.9	1.4	4.9	2.9			
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)										2.5	25.4	13.8	2.5	25.2	13.6	4.1	13.4	7.5
Riffle Slope (ft/ft)										0.016	0.085	0.040	0.006	0.031	0.014	0.005	0.026	0.015
Pool Length (ft)										7.3	27.5	14.6	7.2	27.2	14.5	5.8	29.5	17.2
Pool Spacing (ft)										16.5	62.8	36.5	16.4	62.2	26.1	32.9	53.8	44.3
Substrate																		
d50 (mm)								0.2			6.2			0.2			0.4	
d84 (mm)								6.1			72.7			6.1			7.3	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0069			0.0199			0.0035			0.0080	
Channel Length(ft)								289			496			226			231	
Valley Length (ft)								215			352			178			178	
Sinuosity								1.35			1.41			1.27			1.30	
Rosgen Classification								n/a			C4/1			C4/1			C4/1	

		Ex				Fork (Creek S	-	Restor	Hydra ation /		-	·					
PARAMETERS	USC	GS Gage	Data	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project	Reference	e Stream		Design			As-built	
Dimension - Riffle	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)										6.2	8.6	7.2			7.1			10.4
Floodprone Width (ft)										15.3	25.0	20.5	13.6	28.6	20.9			44.4
BKF Cross Sectional Area (sq. ft.)										3.9	6.3	5.4			4.0			7.7
BKF Mean Depth (ft)										0.56	1.02	0.79			0.57			0.74
BKF Max Depth (ft)										0.64	1.38	1.02	0.46	0.99	0.73			1.45
Width/Depth Ratio										6.1	12.6	9.1			12.5			14.0
Entrenchment Ratio										1.9	4.1	3.0	1.9	4.1	3.0			4.3
Wetted Perimeter (ft)																		11.1
Hydraulic Radius (ft)																		0.70
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)										10.0	35.0	20.9	9.9	34.6	20.7	3.3	29.8	12.6
Radius of Curvature (ft)										2.3	31.8	13.5	2.3	31.5	13.4	11.9	29.5	16.4
Meander Wavelength (ft)										35.0	70.0	50.0	34.6	69.3	49.5	40.5	55.6	47.7
Meander Width Ratio	-									1.4	4.9	2.9	1.4	4.9	2.9	0.3	2.9	1.2
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)										2.5	25.4	13.8	2.5	25.2	13.6	4.4	5.2	4.8
Riffle Slope (ft/ft)										0.016	0.085	0.040	0.006	0.031	0.014	0.009	0.046	0.032
Pool Length (ft)										7.3	27.5	14.6	7.2	27.2	14.5	9.6	18.3	12.6
Pool Spacing (ft)										16.5	62.8	36.5	16.4	62.2	26.1	24.4	41.6	31.2
Substrate																		
d50 (mm)								0.2			6.2			0.2			5.7	
d84 (mm)								6.1			72.7			6.1			15.4	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0155			0.0199			0.0155			0.0178	
Channel Length(ft)								226			496			334			307	
Valley Length (ft)								213			352			267			267	
Sinuosity								1.06			1.41			1.25			1.15	
Rosgen Classification								n/a			C4/1			C4/1			C4/1	

		Ex				Fork (Creek S	-	Restor	Hydra ation /		-						
PARAMETERS	USC	GS Gage	Data	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project	Reference	e Stream		Design			As-built	
Dimension - Riffle	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)										6.2	8.6	7.2			7.1			8.7
Floodprone Width (ft)										15.3	25.0	20.5	13.6	28.6	20.9			42.6
BKF Cross Sectional Area (sq. ft.)										3.9	6.3	5.4			4.0			6.0
BKF Mean Depth (ft)										0.56	1.02	0.79			0.57			0.68
BKF Max Depth (ft)										0.64	1.38	1.02	0.46	0.99	0.73			1.23
Width/Depth Ratio										6.1	12.6	9.1			12.5			12.9
Entrenchment Ratio										1.9	4.1	3.0	1.9	4.1	3.0			4.9
Wetted Perimeter (ft)																		9.3
Hydraulic Radius (ft)																		0.65
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)										10.0	35.0	20.9	9.9	34.6	20.7	5.7	18.2	11.6
Radius of Curvature (ft)										2.3	31.8	13.5	2.3	31.5	13.4	14.0	21.8	16.6
Meander Wavelength (ft)										35.0	70.0	50.0	34.6	69.3	49.5	46.0	57.4	50.8
Meander Width Ratio										1.4	4.9	2.9	1.4	4.9	2.9	0.7	2.1	1.3
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)										2.5	25.4	13.8	2.5	25.2	13.6	4.7	5.5	5.2
Riffle Slope (ft/ft)										0.016	0.085	0.040	0.006	0.031	0.014	0.008	0.040	0.028
Pool Length (ft)										7.3	27.5	14.6	7.2	27.2	14.5	6.5	14.7	9.9
Pool Spacing (ft)										16.5	62.8	36.5	16.4	62.2	26.1	26.9	38.9	34.7
Substrate																		
d50 (mm)								0.2			6.2			0.2			4.0	
d84 (mm)								6.1			72.7			6.1			9.7	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0144			0.0199			0.0048			0.0075	
Channel Length(ft)								157			496			232			208	
Valley Length (ft)								148			352			187			187	
Sinuosity								1.07			1.41			1.24			1.11	
Rosgen Classification								n/a			C4/1			C4/1			C4/1	

							E				edy Fo	rk Cr	eek St		Restor		ring St / D060		ry											
PARAMETERS		Cro	oss Secti Pool	on 7										,	,															
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)	7.8	8.7	8.8																											
Floodprone Width (ft)	78.0	76.7	77.5																											
BKF Cross Sectional Area (sq. ft.)	5.3	5.0	5.2																											
BKF Mean Depth (ft)	0.69	0.58	0.58																											
BKF Max Depth (ft)	1.57	1.52	1.55																											
Width/Depth Ratio	11.2	14.9	15.2																											
Entrenchment Ratio	10.1	8.9	8.8																											
Wetted Perimeter (ft)	8.6	9.4	9.5																											
Hydraulic Radius (ft)	0.62	0.53	0.54																											
PARAMETERS			MY-0	1 (2008)					MY-02	(2009)					MY-03	3 (2010)					MY-04	4 (2011)					MY-05	(2012)	—	—
Pattern	Μ	lin	N	lax	М	led	М	lin	М	ax	Μ	led	Ν	lin	М	lax	N	led	N	ſin	М	lax	N	led	N	lin	М	ax	М	ed
Channel Beltwidth (ft)	6	.1	2	4.8	1	1.5	3	.3	24	1.2	9	.9	5	.0	24	4.4	1	0.4												
Radius of Curvature (ft)	7	.2	2	0.8	1	1.8	6	.8	19	9.8	12	2.7	8	.0	19	9.0	1	3.1												
Meander Wavelength (ft)	28	3.4	5	0.1	38	8.8	31	.4	49	9.7	39	9.1	20	5.0	51	1.4	3	8.9												
Meander Width Ratio	-						-	-	-	-		-			-															
Profile	M	lin	N	lax	М	led	М	lin	М	ax	М	led	N	lin	М	lax	M	led	Ν	lin	М	lax	N	led	N	lin	М	ax	М	ed
Riffle Length (ft)	1	.4	e	.0	4	.1	6	.9	16	ó.5	10).4	4	.7	11	1.7	8	3.8												
Riffle Slope (ft/ft)	0.0)19	0.	177	0.0	063	0.0)30	0.0)70	0.0)54	0.0	011	0.1	106	0.0	040												
Pool Length (ft)	7	.0	1	3.9	10	0.7	6	.8	8	.9	8	.0	6	.3	15	5.3	1	1.4												
Pool Spacing (ft)	23	3.2	6	8.8	37	7.1	21	1.7	41	.5	3	1.5	10	5.8	50	0.9	3	2.4												
Substrate																														
d50 (mm)		_	0	.04	_	_		_	0.	04	_	_		_	3.	.83	_	_		_	_	_	_	_		_	_	_		_
d84 (mm)				4					0.	06					9.	.41														
Additional Reach Parameters																														

0.0192

611

499

1.22

1632

C4

0.0196

602

493

1.22

1632

C6

Bankfull Slope (ft/ft)

Sinuosity

Monitored Channel Length (ft)

Monitored Valley Length (ft)

Total Channel Length (ft)

Rosgen Classification

0.0196

627

499

1.26

1632

C6

							E				edy Fo	rk Cr	eek St	Hydra ream l 2,544 f	Restor				ry											
PARAMETERS		No	Cross Se	ection																										
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)																														
Floodprone Width (ft)			-																											
BKF Cross Sectional Area (sq. ft.)			-																											
BKF Mean Depth (ft)			-																											
BKF Max Depth (ft)			-																											
Width/Depth Ratio			-																											
Entrenchment Ratio			-																											
Wetted Perimeter (ft)			-																										1	
Hydraulic Radius (ft)																														
PARAMETERS			MY-0	1 (2008)					MY-02	2 (2009)					MY-03	3 (2010)					MY-04	4 (2011)					MY-05	5 (2012)		
Pattern	Ν	lin	Ν	ſax	Μ	led	Μ	lin	М	lax	Ν	led	Ν	1in	М	lax	Ν	led	Μ	lin	Μ	lax	N	led	Μ	lin	М	lax	М	led
Channel Beltwidth (ft)	6	.6	6	4.4	3	5.4	3	.8	63	7.8	4	0.5	4	1.6	72	2.6	4	2.0												
Radius of Curvature (ft)	2	3.6	4	2.6	3(0.1	24	11	54	59	3	5.0	2	5.8	3(6.0	3	2.4											1	

Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)) 6.6	64.4	36.4	3.8	67.8	40.5	4.6	72.6	42.0						
Radius of Curvature (ft)) 23.6	42.6	30.1	24.1	55.9	36.0	25.8	36.0	32.4						
Meander Wavelength (ft)	81.3	102.4	90.8	80.2	152.5	110.0	84.8	157.8	111.3						
Meander Width Ratio	o														
Profile	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)) 5.4	14.6	9.6	10.8	22.9	17.8	9.9	22.3	16.7						
Riffle Slope (ft/ft)	0.009	0.066	0.029	0.018	0.046	0.028	0.009	0.025	0.016						
Pool Length (ft)) 16.5	60.3	29.7	13.6	60.9	29.2	17.4	55.6	32.3						
Pool Spacing (ft)) 21.4	99.2	55.7	89.1	117.2	101.0	59.5	105.3	81.1						
Substrate															
d50 (mm))	0.06			0.04			4.65							
d84 (mm))	6.47			1.00										
Additional Reach Parameters					1.00			12.58							
					1.00			12.58							
Bankfull Slope (ft/ft)		0.0108			0.0112			0.0111							
		0.0108 476													
Bankfull Slope (ft/ft))				0.0112			0.0111							
Bankfull Slope (ft/ft) Monitored Channel Length (ft))	476			0.0112 442			0.0111 466							
Bankfull Slope (ft/ft) Monitored Channel Length (ft) Monitored Valley Length (ft))) 	476 356			0.0112 442 329			0.0111 466 356							

							E									lonitor ation /		ummaı 28-A	гy											
									ĩ		•		R2-3 (1																	
PARAMETERS		Cro	ss Secti	on 3			Cro	oss Secti	on 4			Cro	ss Sectio	on 5			Cro	oss Secti	on 6											
TARAMETERS			Pool					Riffle					Riffle					Pool												
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)	10.1	11.75	11.57			10.8	10.77	11.0			9.95	10.41	10.9			10.87	12.0	10.89												
Floodprone Width (ft)	71.78	64.05	65.0			60.27	62.5	75.98			76.64	75.66	79.7			92.77	100.0	100.0												
BKF Cross Sectional Area (sq. ft.)	10.0	8.6	8.08			6.2	5.1	6.65			6.3	5.4	6.0			10.05	10.35	10.84												
BKF Mean Depth (ft)	0.99	0.73	0.7			0.57	0.47	0.6			0.63	0.52	0.55			0.92	0.86	1.0												
BKF Max Depth (ft)	1.82	1.62	1.67			1.07	1.18	1.24			1.10	0.99	1.3			1.89	2.29	2.26												
Width/Depth Ratio	10.2	16.1	16.53			19.0	22.9	18.33			15.79	20.0	19.82			11.82	13.93	10.89												
Entrenchment Ratio	7.1	5.5	5.62			5.6	5.8	6.91			7.7	7.3	7.31			8.5	8.4	9.19												
Wetted Perimeter (ft)	11.1	12.6	12.19			11.2	11.49	11.47			10.38	10.7	11.39			11.7	13.46	11.97												
Hydraulic Radius (ft)	0.90	0.68	0.66			0.55	0.45	0.58			0.61	0.50	0.53			0.86	0.77	0.91												
PARAMETERS			MY-0	1 (2008)					MY-02	(2009)					MY-03	8 (2010)					MY-04	(2011)					MY-05	(2012)		
Pattern	M	1in	M	lax	М	led	Ν	lin	М	ax	М	ed	М	in	М	lax	Ν	led	М	lin	М	lax	М	led	N	lin	М	ax	М	led
Channel Beltwidth (ft)	3	.4	4	3.2	2.	5.2	1	.8	4().6	23	3.4	2.	.2	38	8.6	2	2.2												
Radius of Curvature (ft)	14	4.3	3	7.2	22	2.7	14	4.0	41	.5	24	1.3	14	.5	40).5	2	4.8												
Meander Wavelength (ft)	57	7.7	9	8.0	79	9.8	5	5.1	98	3.6	79	9.7	56	5.2	99	9.4	7	9.8												
Meander Width Ratio	0).3	4	1.2	2	.4	0	.2	3	.8	2	.2	0.	.2	3	.5	2	.0												
Profile	M	1in	M	fax	М	led	N	ſin	М	ax	М	ed	М	in	М	lax	Ν	led	М	lin	М	lax	М	led	N	lin	М	ax	М	led
Riffle Length (ft)	3	5.5	1	6.5	10	0.0	7	.9	21	.3	13	3.3	9.	.0	22	2.1	1	5.4												
Riffle Slope (ft/ft)	0.0	009	0.	056	0.0)21	0.0	011	0.0)41	0.0	023	0.0	004	0.0)22	0.	011				_		_		_				
Pool Length (ft)	11	1.2	3	0.4	19	ə.7	9	.2	35	5.2	18	3.7	8.	.7	25	5.8	1	9.8				_		_		_				
Pool Spacing (ft)	24	4.3	9	5.9	50	5.6	1	7.1	82	2.3	50).9	36	5.2	94	4.0	6	3.4												

4.65

12.58

0.0080

1583

1305

1.21

1771

C4

0.04

1.00

0.0077

1629

1301

1.25

1771

C6

d50 (mm)

d84 (mm)

Sinuosity Total Channel Length (ft)

Bankfull Slope (ft/ft)

Rosgen Classification

Monitored Channel Length (ft)

Monitored Valley Length (ft)

Additional Reach Parameters

0.06

6.47

0.0076

1608

1305

1.23

1771

C6

							E	xhibit	Table	VIII.	Morp	holog	y and 1	Hydra	ulic M	Ionito	ring Su	umma	ry											
								Tril	outary	to Re	edy Fo	rk Cr	eek St	ream l	Restor	ation	/ D0602	28-A												
											ŀ	Reach	R2-4a	(231 f	t)															
PARAMETERS		No	Cross Se	ection																										
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)																														
Floodprone Width (ft)																														
BKF Cross Sectional Area (sq. ft.)															-														L	
BKF Mean Depth (ft)															-														L	
BKF Max Depth (ft)															-														L	
Width/Depth Ratio															-														L	
Entrenchment Ratio															-														L	
Wetted Perimeter (ft)															-														L	
Hydraulic Radius (ft)																													L	
PARAMETERS			MV 0	1 (2008)			r		MY-02	(2000)					MV 03	3 (2010)			1		MY 0/	(2011)			1		MV 05	5 (2012)	—	
Pattern	N	ſin	1	1 (2008) fax		led	N	lin	-	ax		led	N	ſin		(2010) Iax		Ied	N	fin		(2011) [ax	M	led	N	lin	1	(2012) lax	N	fed
Channel Beltwidth (ft)		0.1		1.6		4.8		.3	22			5.3		.3		1.4		4.5	10	1111	IVI	ax	IV	leu	IV		IV	dx	IV	eu
Radius of Curvature (ft)		5.1		5.4		1.6		 4.5		7.4		9.8	-	3.7		8.0		0.7												
Meander Wavelength (ft)	-	8.9		6.4		2.2).3		7.0		3.8		0.9		5.7		3.9												
Meander Waveengar (17)										-																				
Profile	Ν	1in	N	lax	М	led	N	lin	М	ax	М	ed	N	1in	М	lax	М	led	N	lin	М	lax	М	led	N	lin	М	lax	N	led
Riffle Length (ft)	6	i.1	8	3.8	7	.4	7	.4	11	.9	9	.3	6	6.4	7	.8	7	.2												
Riffle Slope (ft/ft)	0.0	004	0.	033	0.0	016			Nov	vater			0.0	007		016	0.0	011												
Pool Length (ft)	14	4.2	13	8.0	10	5.1	9	.1	19	0.3	14	4.2	8.	.76	17	.09	13	3.8	1						1					
Pool Spacing (ft)	2	5.1	5.	4.8	78	8.3	24	4.7	42	2.5	34	1.4	30	0.0	44	4.8	3	7.4	1						l					

0.09

3.43

0.0085

173

147

1.18

231

C6

0.03

0.06

0.00779 (No Water)

205

174

1.18

231

C6

Substrate

Additional Reach Parameters

d50 (mm)

d84 (mm)

Sinuosity Total Channel Length (ft)

Bankfull Slope (ft/ft)

Rosgen Classification

Monitored Channel Length (ft)

Monitored Valley Length (ft)

0.04

0.25

0.0074

169

147

1.15

231

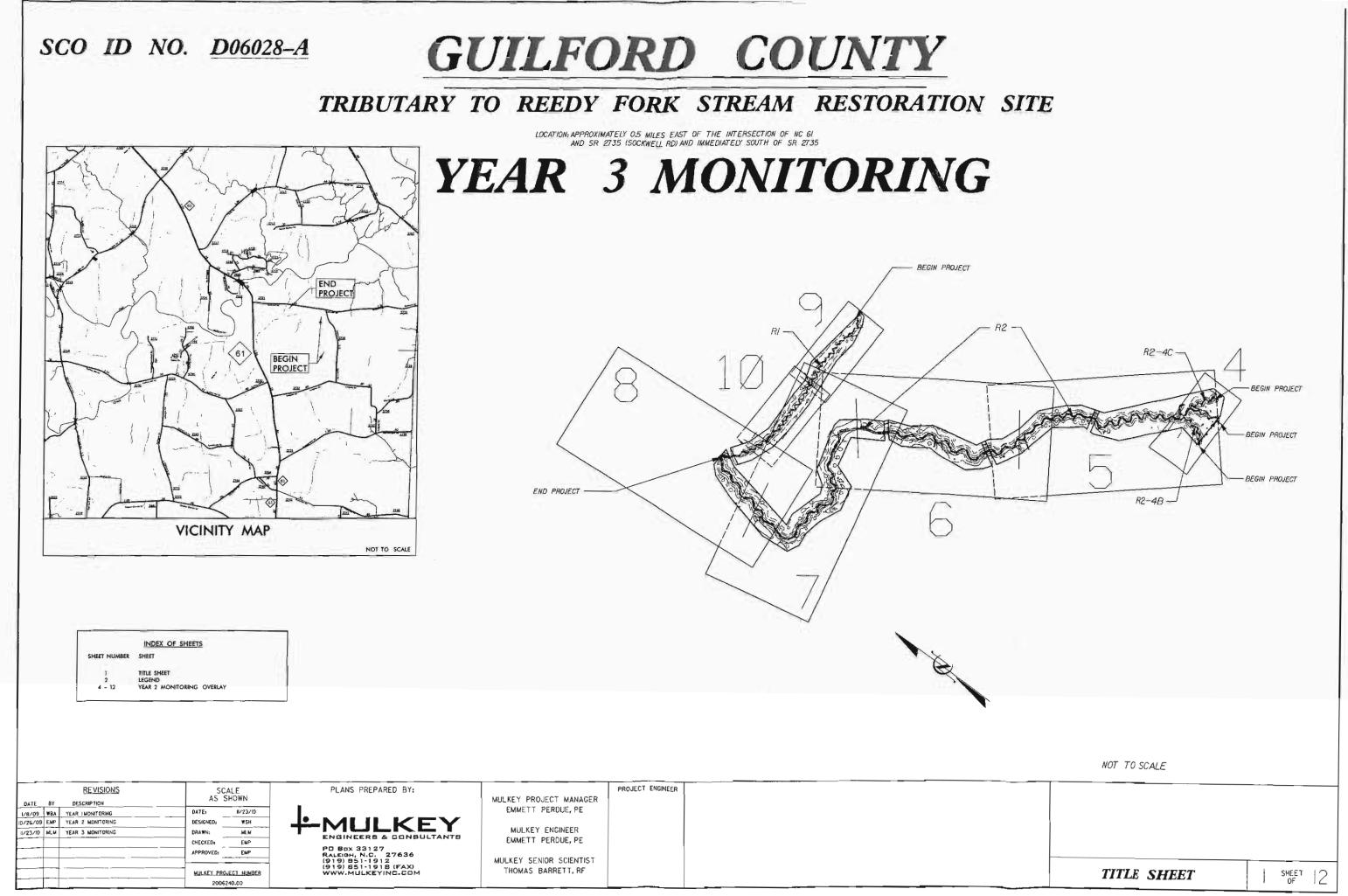
C6

							E				edy Fo		eek St	ream I	Restor		ring Su / D0602		у											
PARAMETERS		Cro	oss Secti Riffle																											
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)	9.38	9.31	9.33																											
Floodprone Width (ft)	37.18	38.0	40.09																											
BKF Cross Sectional Area (sq. ft.)	4.5	4.2	3.81																											
BKF Mean Depth (ft)	0.48	0.45	0.41																											
BKF Max Depth (ft)	0.84	0.89	0.82																											
Width/Depth Ratio	19.54	20.69	22.76																											
Entrenchment Ratio	3.97	4.1	4.3																											
Wetted Perimeter (ft)	9.7	9.8	9.53																											
Hydraulic Radius (ft)	0.47	0.43	0.4																											

PARAMETERS		MY-01 (2008)			MY-02 (2009)			MY-03 (2010)			MY-04 (2011)			MY-05 (2012)	
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	8.4	17.1	13.2	6.3	12.1	8.4	1.6	13.0	8.8						
Radius of Curvature (ft)	13.2	39.3	20.4	16.0	21.6	18.1	13.2	17.4	15.4						
Meander Wavelength (ft)	46.1	56.5	51.3	43.1	55.8	49.5	45.0	54.2	50.1						
Meander Width Ratio	0.9	1.8	1.4	0.7	1.3	0.9	0.2	1.4	0.9						
Profile	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	4.0	12.0	6.6	3.06	10.44	7.6	7.18	8.17	7.68						
Riffle Slope (ft/ft)	0.004	0.048	0.025	0.011	0.027	0.017	0.022	0.027	0.025						
Pool Length (ft)	5.03	13.29	9.16	7.77	12.99	9.76	6.2	14.6	9.5						
Pool Spacing (ft)	23.92	40.72	33.48	24.71	44.75	61.9	38.1	38.9	38.5						
Substrate															
d50 (mm)		0.7			0.5			2.41							
d84 (mm)		7.11			10.66			9.1							
Additional Reach Parameters															
Bankfull Slope (ft/ft)		0.0212			0.0145			0.0154							
Monitored Channel Length (ft)		119			152			116							
Monitored Valley Length (ft)		104			134			103							
Sinuosity		1.15			1.13			1.13							
Total Channel Length (ft)		307			307			307							
Rosgen Classification		C5			C5			C4							

Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-4c (208 ft)																														
PARAMETERS		Cro	oss Secti Riffle																											
Dimension	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
BKF Width (ft)	8.06	8.82	8.65																											
Floodprone Width (ft)	42.63	39.55	32.2																											
BKF Cross Sectional Area (sq. ft.)	6.0	5.5	2.7																											
BKF Mean Depth (ft)	0.74	0.62	0.31																											
BKF Max Depth (ft)	1.26	1.06	0.62																											
Width/Depth Ratio	10.89	14.23	27.9																											
Entrenchment Ratio	5.3	4.5	3.72																											
Wetted Perimeter (ft)	8.6	9.2	8.86																											
Hydraulic Radius (ft)	0.69	0.60	0.3																											

PARAMETERS		MY-01 (2008)			MY-02 (2009)			MY-03 (2010)			MY-04 (2011)			MY-05 (2012)	
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	5.3	17.3	13.1	3.7	16.0	11.5	15.7	15.9	15.8						l
Radius of Curvature (ft)	14.9	24.5	18.3	10.8	25.0	17.3	13.8	17.4	15.5						l
Meander Wavelength (ft)	48.7	58.1	53.4	47.2	56.0	51.6	56.3	56.3	56.3						l
Meander Width Ratio	0.7	2.1	1.6	0.4	1.8	1.3	1.8	1.8	1.8						1
Profile	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	5.9	8.1	7.3	7.4	11.7	9.5	4.5	8.1	6.3						l
Riffle Slope (ft/ft)	0.004	0.009	0.006	0.001	0.022	0.012	0.008	0.013	0.018						l
Pool Length (ft)	11.7	13.0	12.4	11.8	14.9	13.4	11.7	11.7	11.7						l
Pool Spacing (ft)	30.8	40.6	36.6	47.2	47.8	47.5	30.8	45.6	38.2						l
Substrate															
d50 (mm)		0.04			0.05			0.03							
d84 (mm)		1.00			0.06			0.05							
Additional Reach Parameters															
Bankfull Slope (ft/ft)		0.0047			0.0050			0.006							
Monitored Channel Length (ft)		117			107			100							
Monitored Valley Length (ft)		101			93			80							
Sinuosity		1.15			1.15			1.25							
Total Channel Length (ft)		208			208		208								
Rosgen Classification		C6			C6			C6							


		Exhibit	Table	e IX.	BEH	and	Sedin	ent E	xport	Estir	nates				
		Tributary (to Ree	edy Fo	ork C	reek S	Strean	n Rest	toratio	on / D	06028	-A			
Time Point	Segment / Reach ¹	Linear Footage or Acreage	Extr	eme	Very	High	Hi	gh	Mod	erate	Lo)W	Very	Low	Sediment Export
			ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	Tons/yr
	R1	1409	1409	100											126.8
	R2-1	906	906	100											81.5
	R2-2	2522	2522	100											126.1
Preconstruction	R2-3	1584	1584	100											110.9
2006	R2-4a	289													n/a
	R2-4b	226													n/a
	R2-4c	157													n/a
	TOTAL	7092	6420	91	0	0	0	0	0	0	0	0	0	0	445
	R1	1632									1632	100			2.4
	R2-1	819									819	100			3.0
	R2-2	2544									2544	100			9.2
Monitoring Y3	R2-3	1771									1771	100			7.7
2010	R2-4a	231									231	100			0.4
	R2-4b	307									307	100			1.6
	R2-4c	208									208	100			2.3
	TOTAL	7512	0	0	0	0	0	0	0	0	7512	100	0	0	26.6
	R1	1632													
	R2-1	819													
	R2-2	2544													
Monitoring Y5 2012 (NOT	R2-3	1771													
APPLICABLE)	R2-4a	231													
in i Lichdel)	R2-4b	307													
	R2-4c	208													
	TOTAL	7512	0	0	0	0	0	0	0	0	0	0	0	0	0

¹BEHI and Sediment Export estimates were not conducted for reaches R2-4a, R2-4b, and R2-4c before Construction as they did not exist.

Exhibit Table X. Verification of Bankfull Events Tributary to Reedy Fork Creek Stream Restoration / D06028-A												
Date of Data Collection	Date of Occurrence	Method	Photo No. (If Available)									
9/22/08-9/24/08	Unknown	Crest Guages	N/A									
9/9/2009	Unknown	Crest Guages	N/A									
9/28/2010	Unknown	Crest Guages	N/A									

Ex		0	l Stream Featu k Creek Stream		•	nt
	TTibutary		Reach R1 (1,632 f		D00020-A	
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
		F	leach R2-1 (819	ft)		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Fhalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
		R	each R2-2 (2,544	ft)		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
		R	each R2-3 (1,771	ft)		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
		R	each R2-4a (231	ft)		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
<u>-</u>		-	each R2-4b (307	,		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		

_	Exhibit Table XII. Stream Problem Areas Tributary to Reedy Fork Creek Stream Restoration / D06028-A										
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)								
None observed Monitoring Year 3 (2010)	N/A	N/A	N/A								
None observed Monitoring Year 2 (2009)	N/A	N/A	N/A								
None observed Monitoring Year 1 (2008)	N/A	N/A	N/A								

4,

NOTE: NOT TO SCALE Not all symbols used in plans

LEGEND

TELEPHONE:

--

 \odot 3

 (\top)

"

HH

BOUNDARIES AND PROPERTY:

State Line
County Line
Township Line
City Line
Reservation Line
Property Line
Existing Iron Pin
Property Corner
Property Monument
Existing Fence
Temporary Fence
Proposed Woven Wire Fence
Proposed Chain Link Fence
Proposed Barbed Wire Fence
Tree Protection Fence
Wetland Boundary
Proposed Oxbow Wetland Boundary
Conservation Easement
Construction Limits
Limits Of Disturbance
Proposed Gate
Bench Mark
Control Point-

BUILDINGS AND OTHER CULTURE:

Sign · · · · · · · · ·		••••••	O s
Foundation	 		
Area Outline		· · · · · · · · · ·	
Building			
School			
Church			_ 1

HYDROLOGY:

Hydro, Pool or Reservoir
River Basin Buffer
Flow Arrow
Disappearing Stream
Spring
Tholweg-
Top Of Bank
Swamp Marsh
Proposed Lateral, Tail, Head Ditch
Bedrock

RAILROADS:

Standard Guage				-	-	-	-	-	-		-	-	-	-		•	-	CSX TRANSPORTATION
RR Signal Milepost	-	-	-	-	-	-		•	-	-	*	-		-	-	•	-	MILEFOST 35
Switch		-	-	-	-	-	•	-		•	-	-	-	•		-	-	- SWITCH
RR Abandoned			•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

ROADS AND RELATED FEATURES:

Existing Ed	lge of Paveme	nt -	-		•	-	 -	•	-	-	
Existing C	urb ·····				•	~	 •		-		
Existing So	oil Road · · · · ·		-	- •		-	 -	. .	-		
Existing M	etal Guardrail		-		-	-	 •		~	-	
Existing C	able Guiderail	-	-		-	-	 •		-	-	
	4										

VEGETATION:

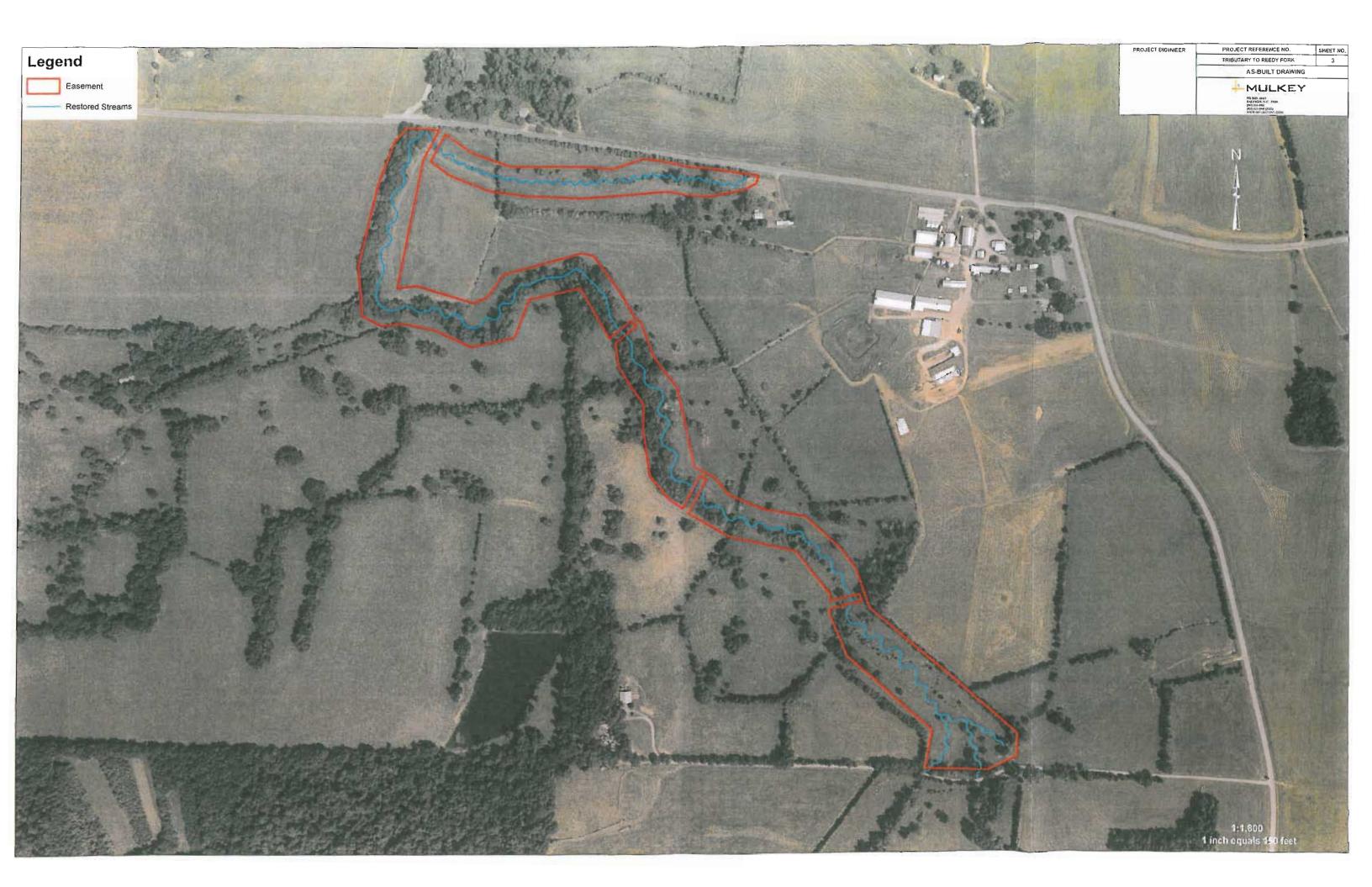
Single Tree			-	-		-	•		-	-	-	-	-	-	-	-	-	-	- ~~ tù
Single Shrub			•			-	-	-	•	•	-	•	-	-		•	•	-	- 0
Hedge			-	-		-	-	•	·		-	-	·	-	-	-	-	•	
Woods Line	- •	• •	-		•	-	-	-	•	•	-	-		·	-	-	-	·	
Orchard			-			-	-	-	-	-		•	-			-	•	-	- 0 0 0 0
Vineyard			•	-	• •		-	-	Ŷ	•	-	-		•	-	•		-	- Vineyord

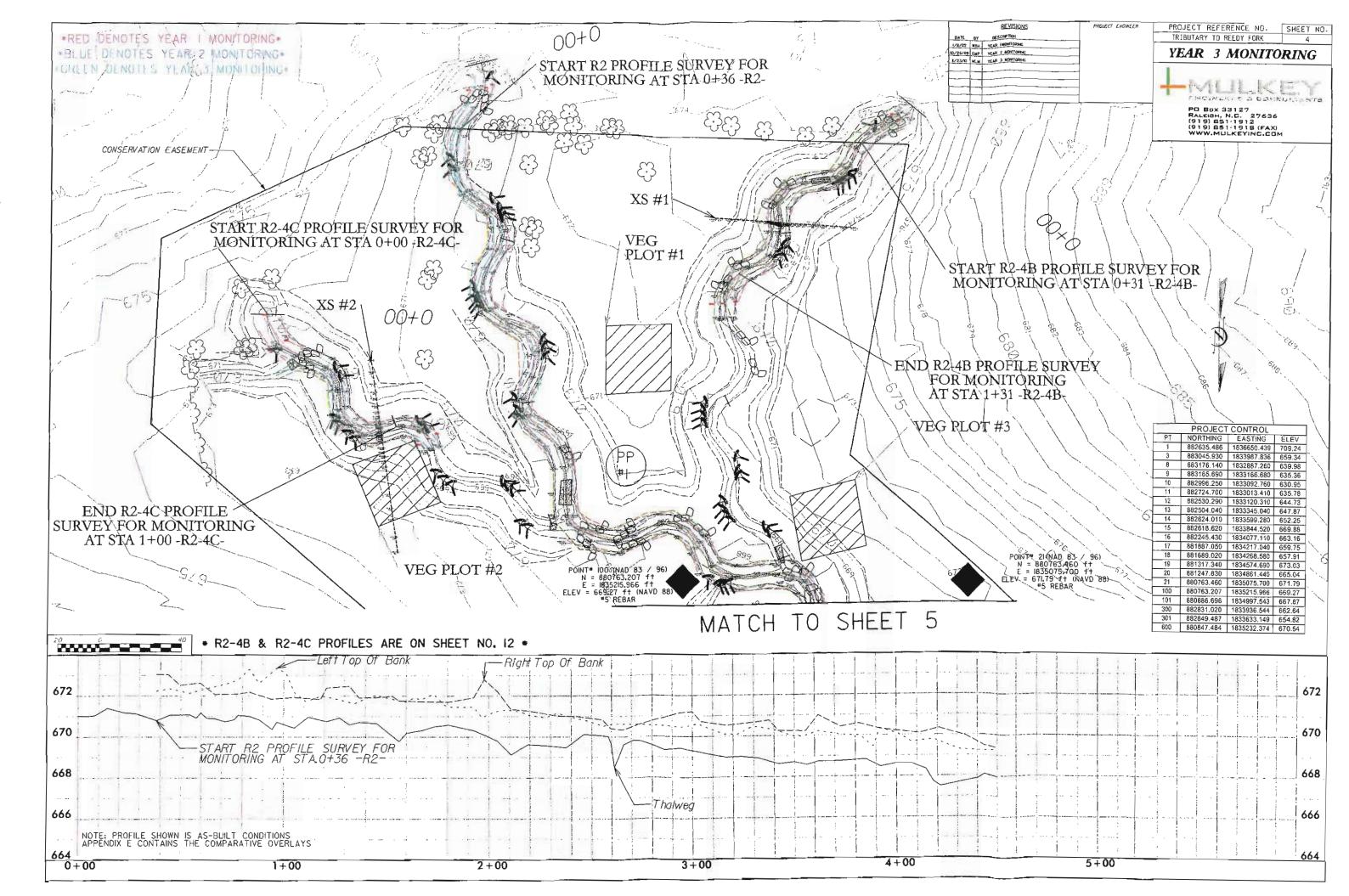
EXISTING STRUCTURES:

MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall) CONC MM (
MINOR:	
Head and End Wall	CONC HW
Pipe Culvert	
Footbridge	
Drainage Box: Catch Basin, DI or JB	СВ
Paved Ditch Gutter	
Storm Sewer Manhole	S
Storm Sewer	<u> </u>
ITTILITIES:	

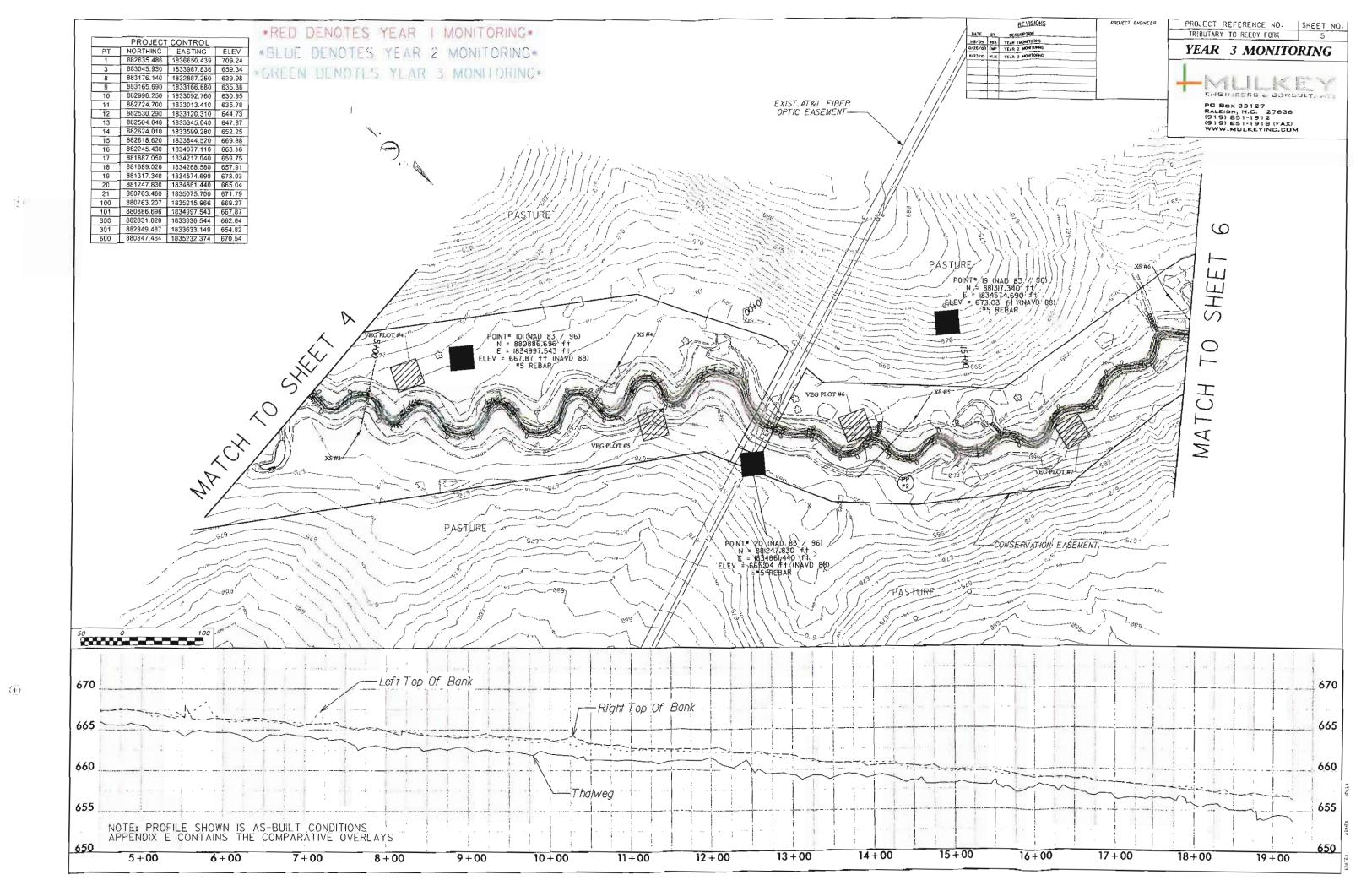
UTILITIES:

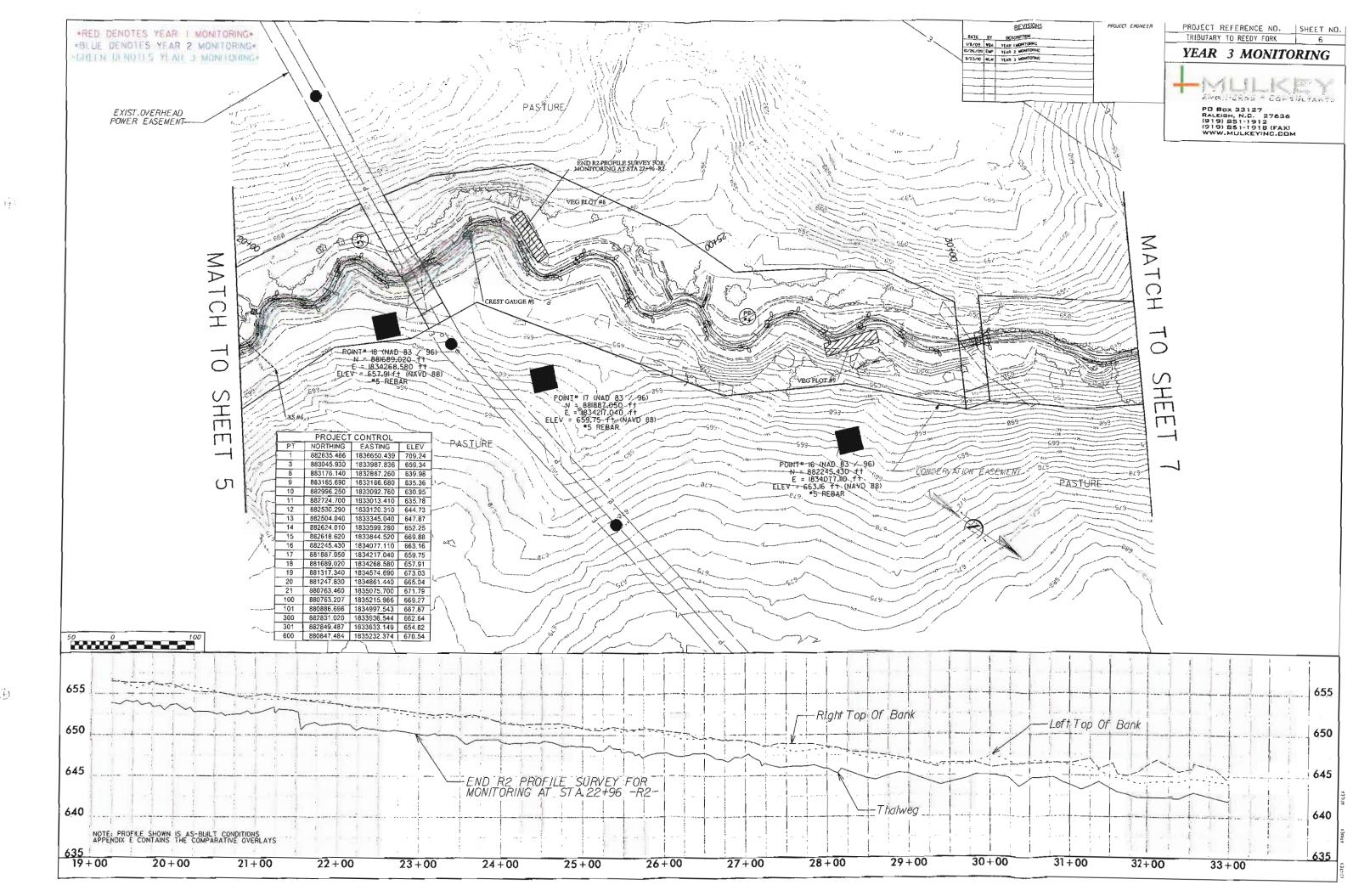
POWER:	
Existing Power Pole	6
Existing Joint Use Pole	-
Power Manhole	®
Power Line Tower	\boxtimes
Power Transformer	Ø
U/G Power Cable Hand Hole	Ha
H-Frame Pole	••
Recorded U/G Power Line	P
GAS:	
Gas Meter	¢
Recorded U/G Gas Line	
Above Ground Gas Line	A/G Gos

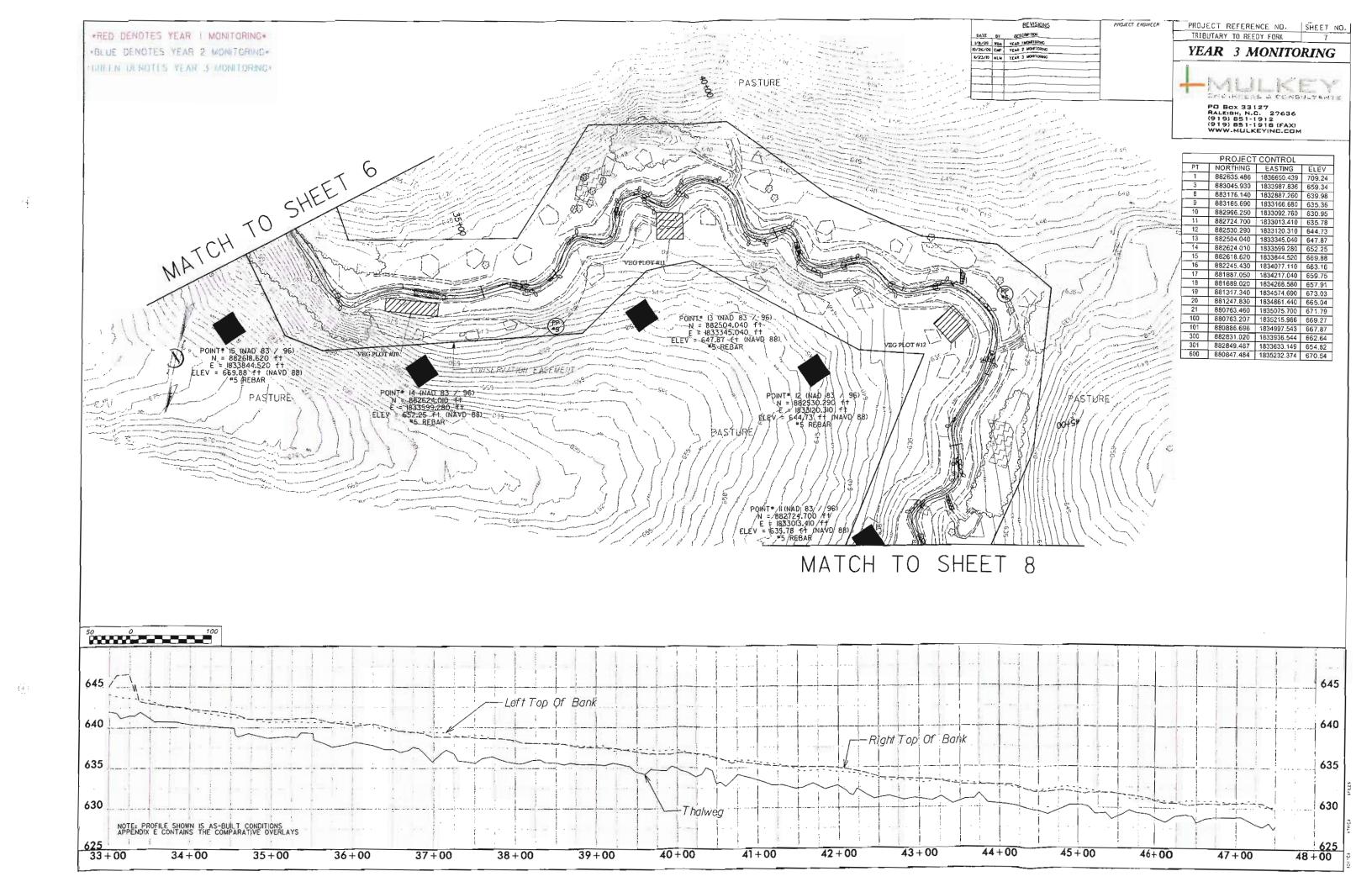

Existing Telephone Pole Telephone Manhole Telephone Booth Telephone Pedestal Telephone Cell Tower U/G Telephone Cable Hand Hole Recorded U/G Telephone Cable Recorded U/G Telephone Conduit

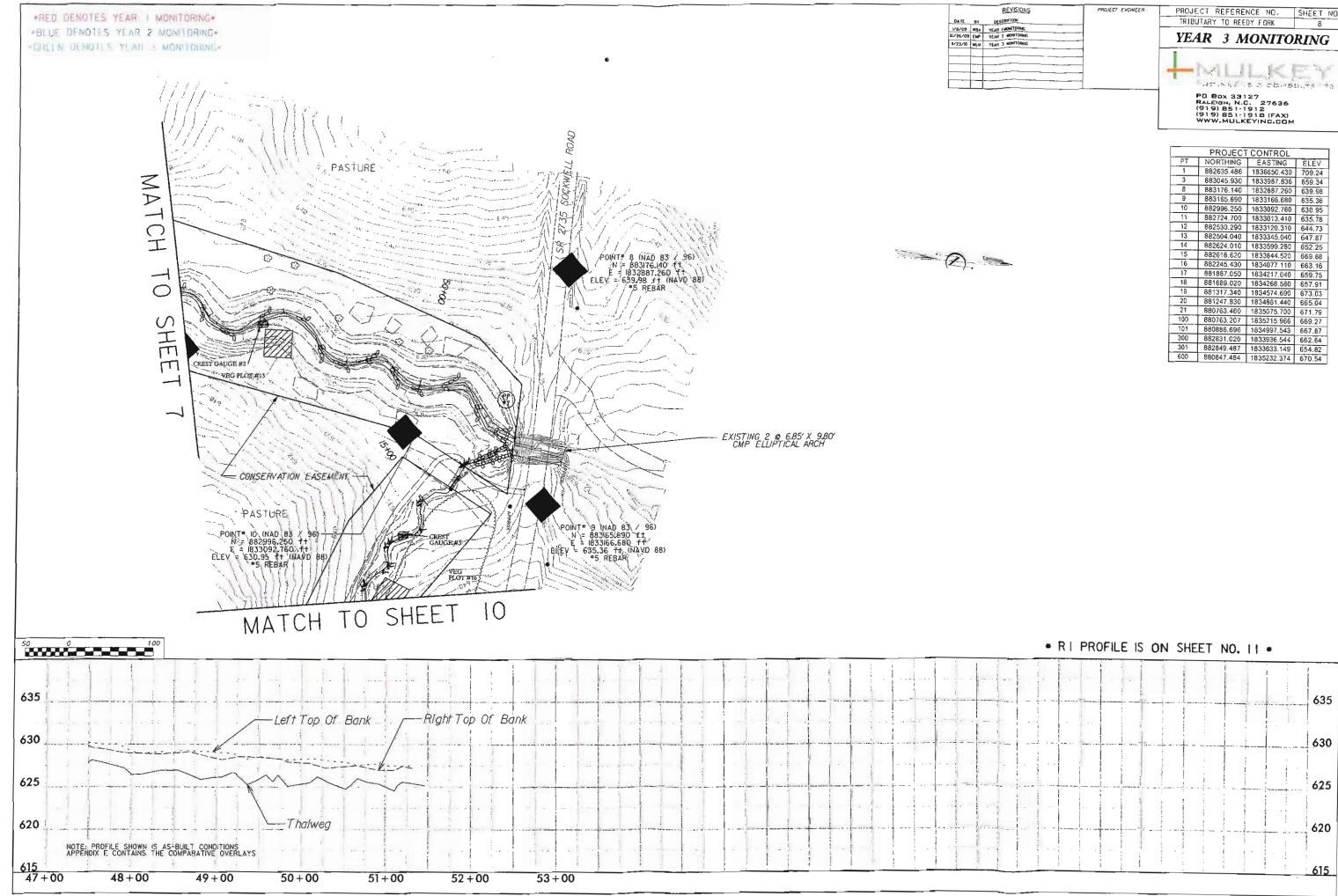

Recorded U/G Fiber Optics Cable	1 F0
WATER:	
Water Manhole	\otimes
Water Valve	\otimes
Water Hydrant	Ŷ
Recorded U/G Water Line	
Above Ground Water Line	A/C Woter

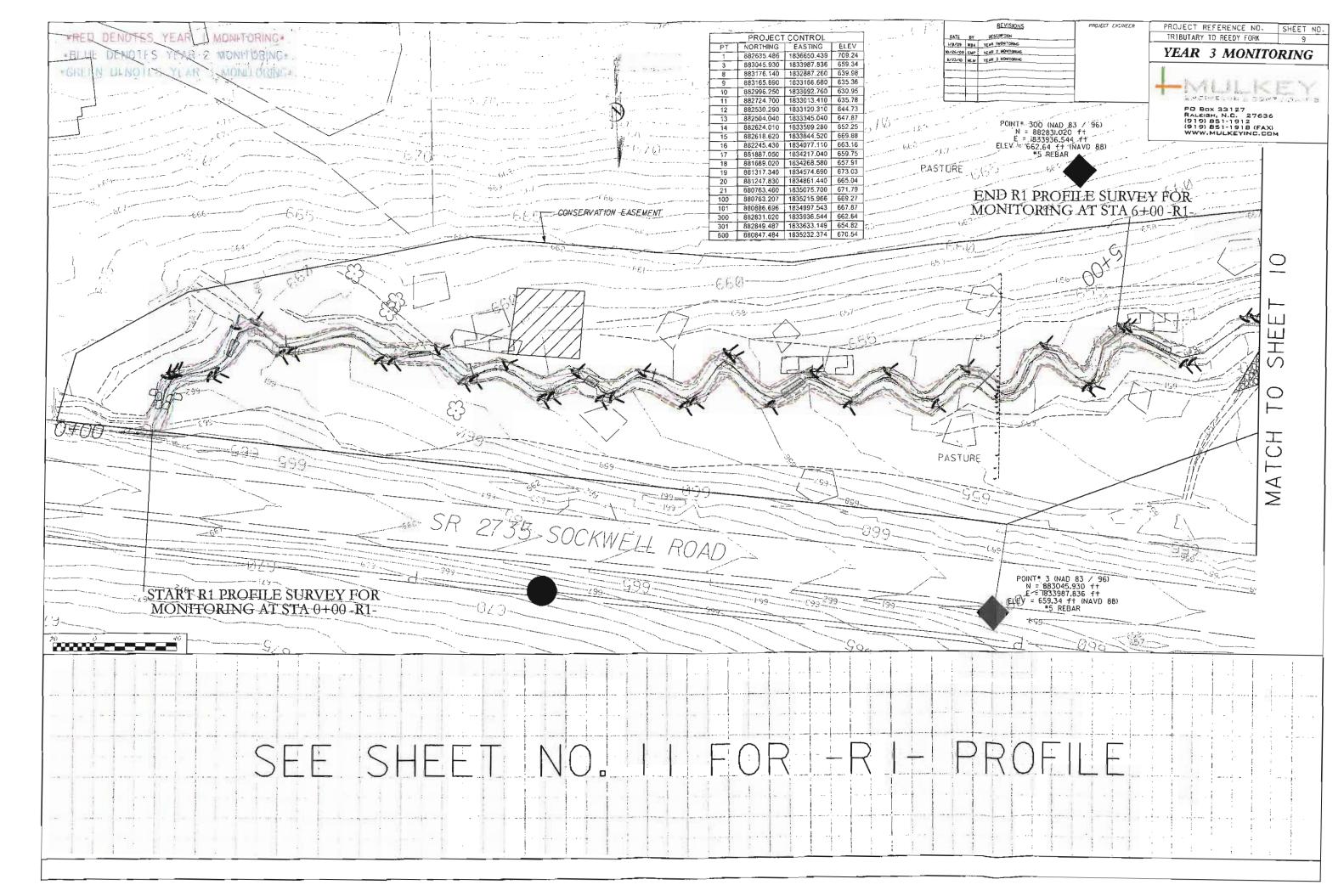
TV:

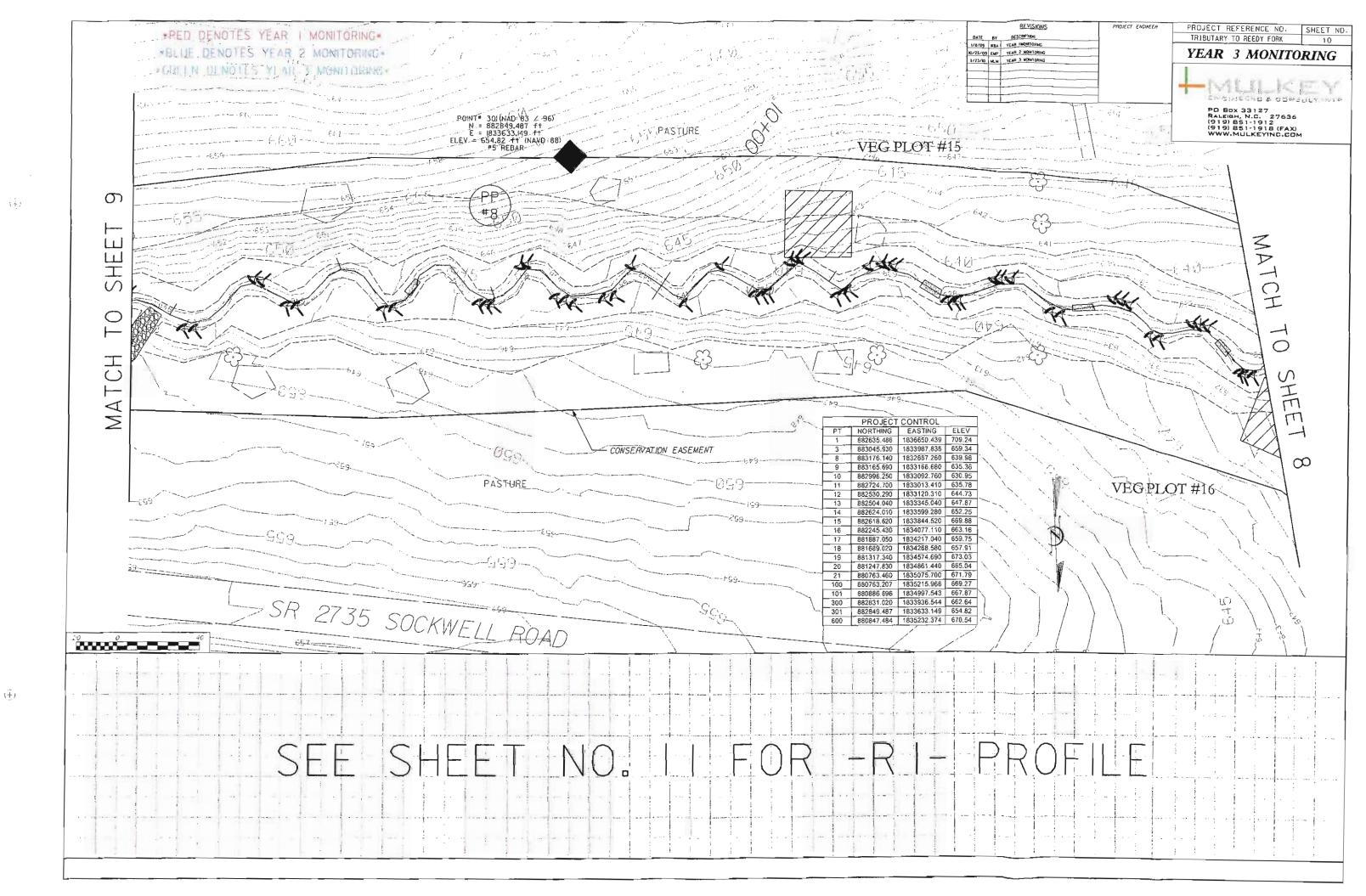

TV Satellite Dish	\ltimes
TV Pedestal	
TV Tower	\otimes
U/G TV Cable Hand Hole	μ,μ
Recorded U/G TV Cable	TV
Recorded U/G Fiber Optic Cable	TV F0
MISCELLANEOUS:	
Utility Pole	•
Utility Pole with Base	Ŀ
Utility Located Object	\odot
Utility Traffic Signal Box	S
Utility Unknown U/G Line	
U/G Tank; Water, Gas, Oil	
A/G Tank; Water, Gas, Oil	
Abandoned According to Utility Records	AATUR
End of Information	E.O.I.
SANITARY SEWER:	S
Sanitary Sewer Manhole	Œ
Sanitary Sewer Cleanout	•
U/G Sanitary Sewer Line	
Above Ground Sanitary Sewer	A/G Sonitary S
Recorded SS Forced Main Line	——— —F\$S


REVISIONS	PROJECT ENGINEER	PROJECT REFERENCE NO.	SHEET NO.
DESCRIPTION YEAR JACHTORING		TRIBUTARY TO REEDY FORK	2
			EY
		ENGINEERS & CON	SULTANTS
		PD BOX 33127 Raleish, N.C. 27636 (919) 851-1912 (919) 851-1918 (Fax	5
	l	WWW.MULKEYING.CO	, м
PROPO	SED STREA	M WADV.	l
		WOAK.	
STREAM ST	vane		and a
_			baaad
	ck Vane		s saccol
	ck yone	• - • • • • • • • • • • • • • • • •	En presidente de la construcción de
Flood Plan	e Interceptor	á	
Constructed	Riffle		
			<u></u>
Root Wad		• • • • • • •	
Log Weir			
Structure N	lumber		\bigcirc
			<u>.</u>
Constructed	d Flood Plane In	terceptor	PPA
			سد چې
STREAM FE	ATURES:		
Constructed	d Bankfull/Top 0	f Bank · · · · · · ~	
Old Top C	Of Bank		
Constructed	d Thalweg		
	Thalweg		·
Waters Edg	-		
	s Edge		
		_	
Surface We	ater	· · · · · · · · · · · ·	
Staging Ar	ea.	·····	\sim
Impervious	Dike		\Rightarrow
	Improved Gravel		
		L.	<u> </u>
Temporary	Gravel Road	· · · · · · · · · · · · · · · · · · ·	.4
Stone Out	let Sediment Trap		
Impervious	Stream Channe	Plug	
Fill Existing	Stream Channe	s l	600
_	Plot	••••	
Brush Pile	•••••		
MISCEI	LLANEOUS:		
Photo Poir	nt		(PP #I
Cross Sect	ion		
Crest Gaug	ge	()




(+)


 $(\widehat{+})$


REVISIONS DESCRIPTION	PROJECT ENGINEER	PROJECT REFERENCE NO. TRIBUTARY TO REEDY FORK	SHEET NO. 8
AR 2 MONTORING AR 3 MONTORING		YEAR 3 MONITO	RING
	~	- NILLIER	press for an
	-	AT NEE . B D COME	6

<u> </u>	5 m c. (m c.)		
		CONTROL	
PT	NORTHING	EASTING	ELEV
1	882635.486	1836650.439	709.24
3	883045.930	1833987,836	659.34
8	883176.140	1832887.260	639,98
9	883165.690	1833166.680	635.36
10	882996.250	1833092.760	630.95
11	882724.700	1833013.410	635.78
12	882530.290	1833120.310	644.73
13	882504.040	1833345.040	647.87
14	882624.010	1833599.280	652.25
15	882618.620	1833844.520	669.88
16	882245.430	1834077.110	663.16
17	881887.050	1834217.040	659.75
18	881689.020	1834268.580	657.91
19	881317.340	1834574.690	673.03
20	881247.830	1834861.440	665.04
21	880763.460	1835075,700	671.79
100	880763.207	1835215.966	669.27
101	880886.696	1834997.543	667.87
300	882831.020	1833936.544	662.64
301	882849.487	1833633.149	654.82
600	880847.484	1835232.374	670,54

(† 1

લંગ

AS-BUILT	PROFILES

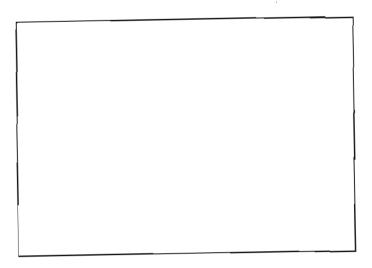
AS-BUILT PROFILES	BEVISIONS DATE BY DESCRETON LAB/03 INDA VCAR LINDATORNIC LOZEC03 EUP VCAR 2. MONTORNIC	PROJECT ENGINEER PROJECT REFERENCE NO. S TRIBUTARY 10 REEDY FORK YEAR 3 MONITOR
		HORIZONTAL SCALE
		VERTICAL SCALE
Right Top. Of Bank		
START RI PROFILE		
START RI PROFILE		
NOTE: PROFILE SHOWN IS, AS-BUILT CONDITIONS		
<u>E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>		
사이 같은 것이 같은 것이 같은 것이 있다. 이 가지 않는 것이 않는 것이 않는 것이 있는 것이 없는 것이 없는 것이 없는 것이 같이 없는 것이 같이 없는 것이 같이 없는 것이 같이 없는 것이 없다. 같이 않는 것이 없는 것이 없다. 것이 않는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 않는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없는 것이 없다. 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 없다. 않는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없다. 않는 것이 없다. 않는 것이 없는 것이 없다. 않는 것이 않는 것이 없다. 않는 것이 없다. 않는 것이 없다. 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 없다. 않는 것이		
Left Top Of Bank		
\sim		
NOTE: PROFILE SHOWN IS AS BUILT CONDITIONS		
NOTE: PROFILE SHOWN IS AS BUILT CONDITIONS APPENDIX E CONTAINS THE COMPARATIVE OVERLAYS		
$-00 \qquad 9+00 \qquad 10+00 \qquad 11+00 \qquad 12+00 \qquad 13+00 \qquad 14+00 \qquad 15+00 \qquad 16+00 \qquad 17+00$		

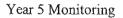
AS-BUILT PROFILES	BE VISIONS DATE BY DESCRPTION USERPTION L/B/09 MBA YEAR MO25/09 BUP YEAR MO25/09 BUP YEAR MO25/09 BUP YEAR MO25/09 BUP YEAR	PROJECT ENCINELA TRIBUTARY TO REEDY FORK 12 YEAR 3 MONITORING
		ORIZONTAL SCALE
		VERTICAL SCALE
690 R 2 - 4 B		690
		685
		680
Loft Top Of Bank		
675		675
Right Top Of Park		
670		670
665		665
660		
		660
APFENDIX E CONTAINS THE COMPARATIVE OVERLAYS		
0+00 $1+00$ $2+00$ $3+00$ $4+00$	<u>1991, 1997, 1997, 2018, 2019</u> , 2019, 2019	<u>655</u>
		은이 같은 안전, 이상 것 같은 것을 많을 것 같아요. 나라. 같은 것은 것은 것은 것이 있는 것을 것을 것을 것 같아요. 나라.
680		680
675 / Right Top Of Bank		675
lete top or Back		
670		670
665		445
		665
660		
		660
655		655
APPENDIX E. CONTAINS THE COMPARATIVE OVERLAYS		
650 0+00 1+00 2+00 3+00		650

Ų

ų,

As-Built Surveys, April 2008

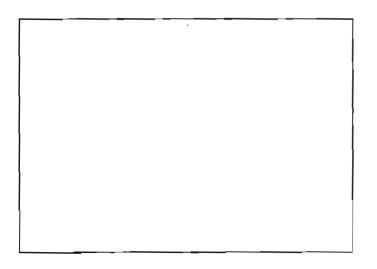

Year 1 Monitoring, September 2008

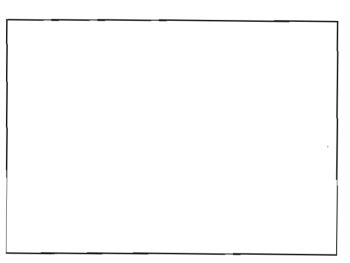

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

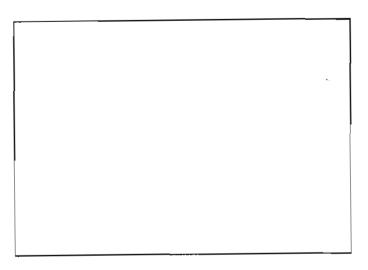
Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

As-Built Surveys, April 2008

.


Year 1 Monitoring, September 2008

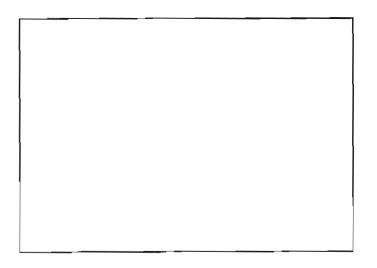
Year 2 Monitoring, September 2009

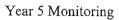
Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

As-Built Surveys, April 2008

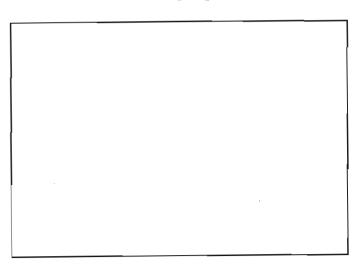

Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

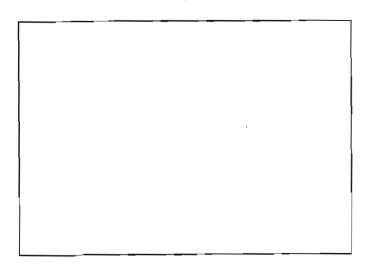
Year 2 Monitoring, September 2009

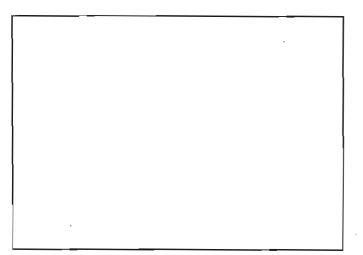
Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

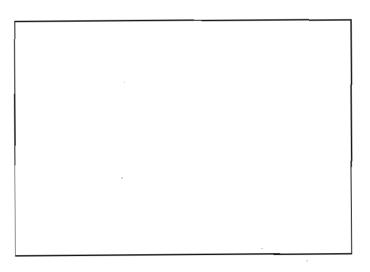

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

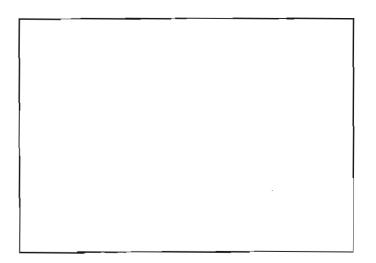
Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

7

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

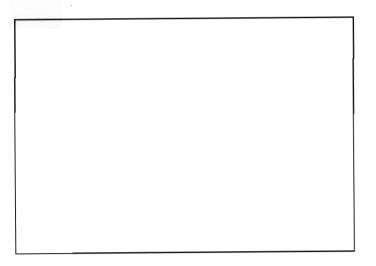
Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

Veg Plot 9

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

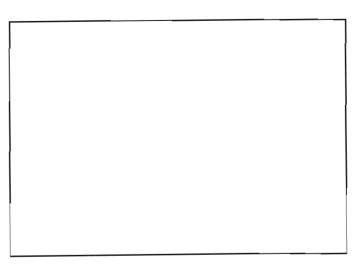
г	 		
I			
I			
(
1			
I			
I			
1			

Year 4 Monitoring

Veg Plot 10

As-Built Surveys, April 2008

Veg Plot 11


Year 1 Monitoring, September 2008

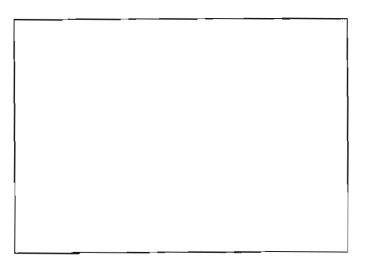
Year 2 Monitoring, September 2009

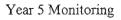
Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

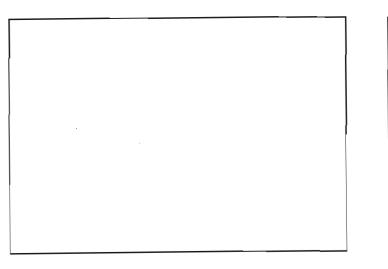


Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Veg Plot 13

As-Built Surveys, April 2008

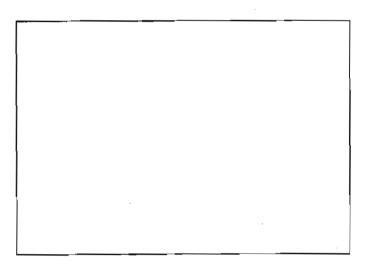

Year 1 Monitoring, September 2008

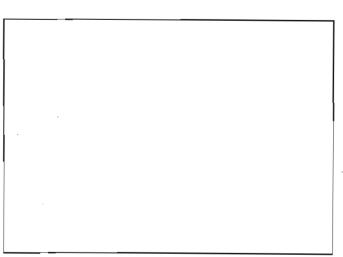
Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

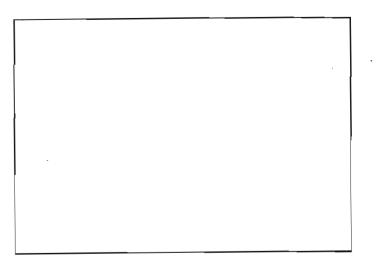
Year 5 Monitoring

Veg Plot 14

MULKEY

As-Built Surveys, April 2008

Veg Plot 15


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

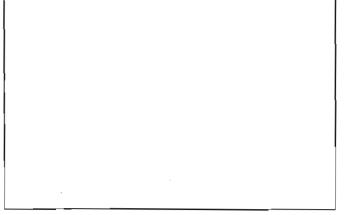
Year 4 Monitoring

Year 5 Monitoring

Veg Plot 16

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

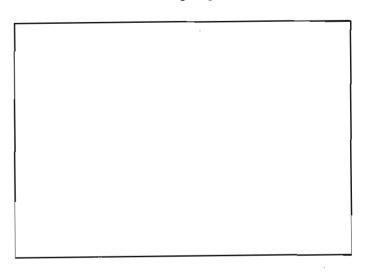
Year 3 Monitoring, September 2010

1		
)		
1		
l		
1		

Year 4 Monitoring

Photo Point 1: Looking upstream toward driveway

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

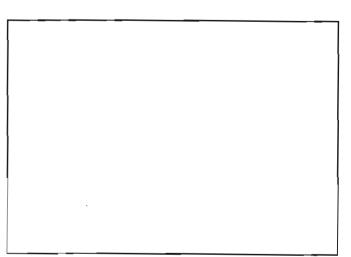
Year 4 Monitoring

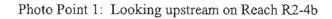
Year 5 Monitoring

Photo Point 1: Looking toward Reach R2-4a and R2-4c

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

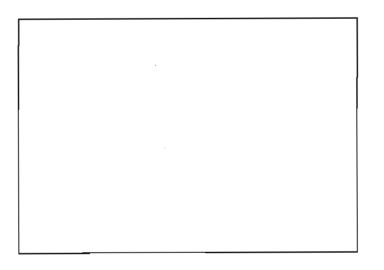

Year 2 Monitoring, September 2009

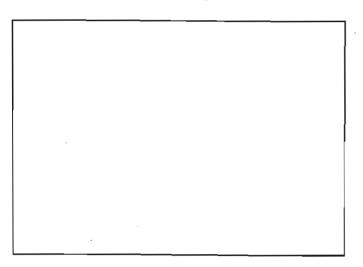

Year 3 Monitoring, September 2010

1		
l		
{		
1		

Year 4 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

Photo Point 1: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

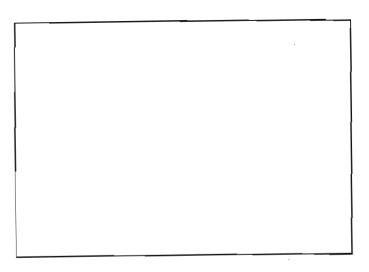
Year 3 Monitoring, September 2010

]	
1	

Year 5 Monitoring

Photo Point 2: Looking upstream on Reach R2

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

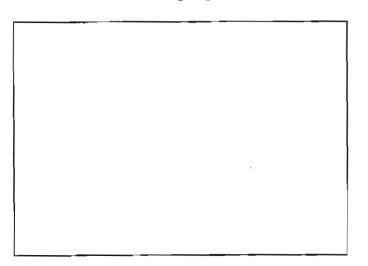
Year 2 Monitoring, September 2009

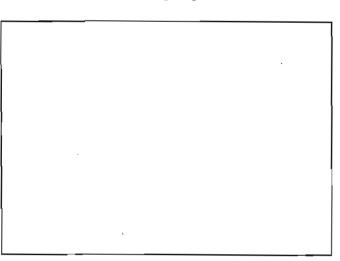
Year 3 Monitoring, September 2010

Year 4 Monitoring

Photo Point 2: Looking downstream on Reach R2

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008



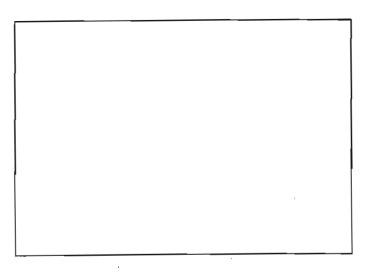
Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 5 Monitoring

Photo Point,3: Looking upstream on Reach R2

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

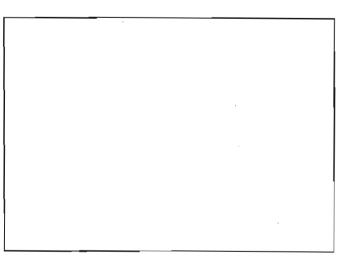
Year 3 Monitoring, September 2010

Year 4 Monitoring,

Photo Point 3: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008



Year 2 Monitoring, September 2009

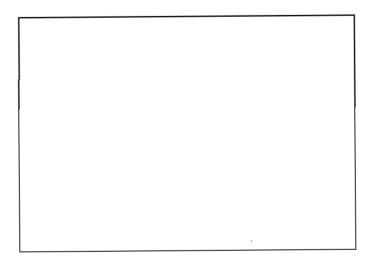
Year 3 Monitoring, September 2010

		l
1		
		l
}		
1		
		1
1		

Year 5 Monitoring

Photo Point 4: Looking upstream on Reach R2

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

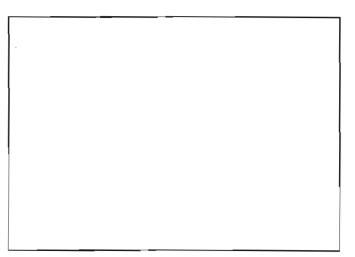
Year 3 Monitoring, September 2010

Year 4 Monitoring

Photo Point 4: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

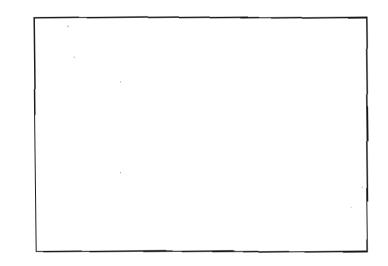
Year 3 Monitoring, September 2010

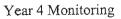
9		
}		
1		l

Year 4 Monitoring

Photo Point 5: Looking upstream on Reach R2

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008



Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

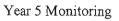


Photo Point 5: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

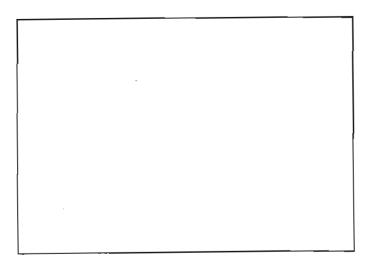
Year 3 Monitoring, September 2010

_		

Year 4 Monitoring

Photo Point 6: Looking upstream on Reach R2

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

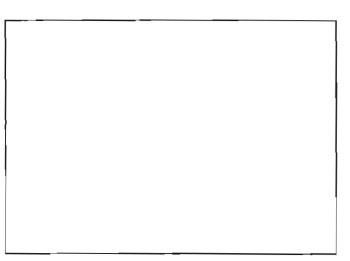
Year 3 Monitoring, September 2010

Year 4 Monitoring

Photo Point 6: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

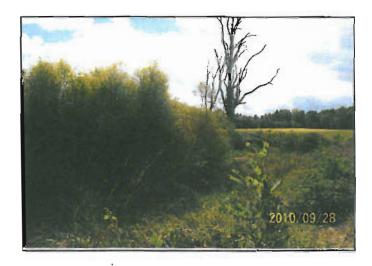

Year 2 Monitoring, September 2009

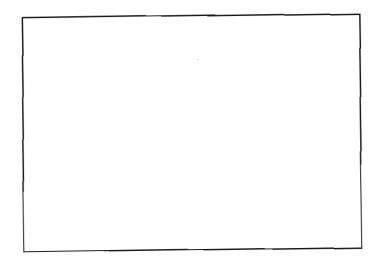
Year 3 Monitoring, September 2010

ſ				
I				
۱				
I				
I				
l				
I				
Ì				
I				
I				
ł				ĺ
I				
I				
I				
۱				
1				
I				
I				
I				
l				
L				

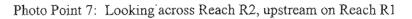
Year 4 Monitoring

Photo Point 7: Looking upstream on Reach R2


As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

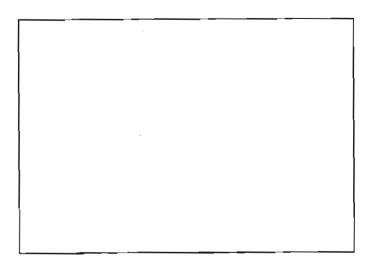
Year 2 Monitoring, September 2009

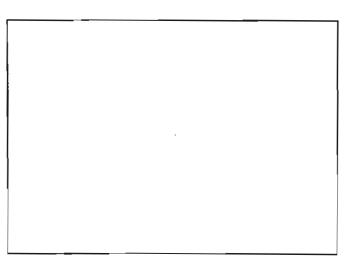


Year 3 Monitoring, September 2010

Year 4 Monitoring

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring

Year 5 Monitoring

Photo Point 8; Looking upstream on Reach R1

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

		,

Year 4 Monitoring

Photo Point 8: Looking downstream on Reach R1

As-Built Surveys, April 2008

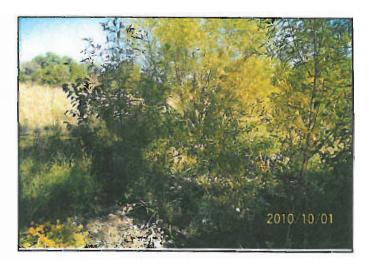
Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

l .			
l			
ļ			

Year 4 Monitoring


As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

	1
	,
	J

Year 4 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

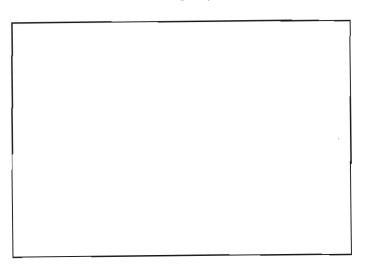
Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

		· · · · ·

		1

As-Built Surveys, April 2008


Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

l		
l		
}		
]		
•		

Year 4 Monitoring

			- 1
			1

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

		1
		I
		I
1		
		1

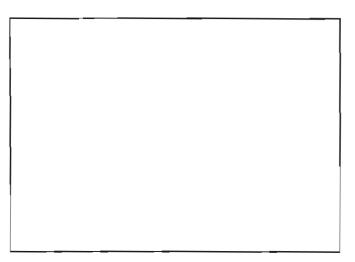
Year 4 Monitoring

Year 5 Monitoring

Permanent Cross Section 6

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

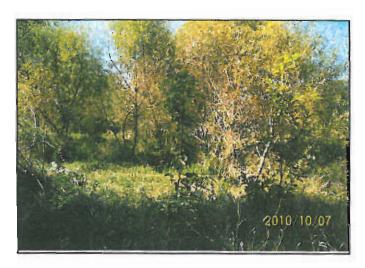


Year 2 Monitoring, September 2009

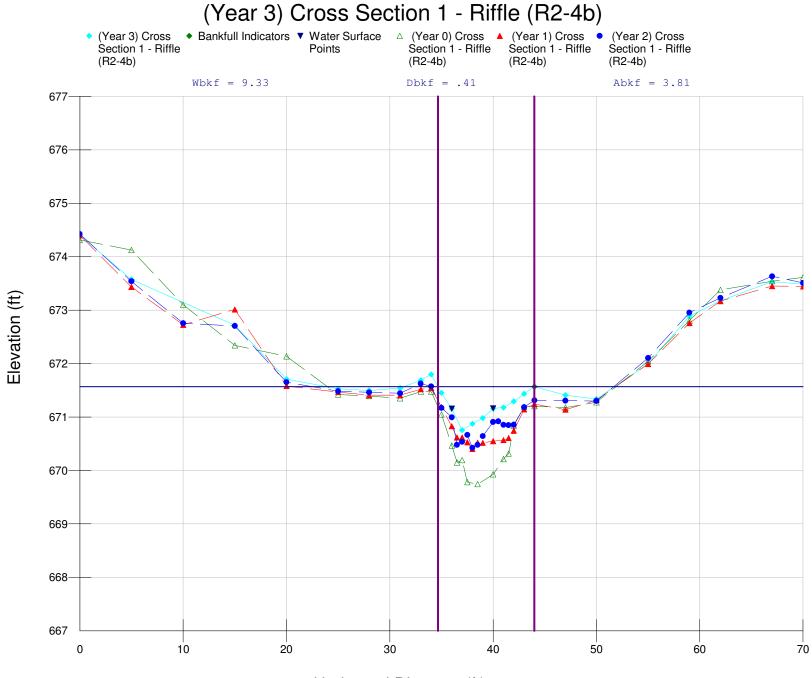
Year 3 Monitoring, October 2010

Ł				
L				
1				
L				
1				
		 _		

Year 5 Monitoring


As-Built Surveys, April 2008

Year 1 Monitoring, September 2008


Year 2 Monitoring, September 2009

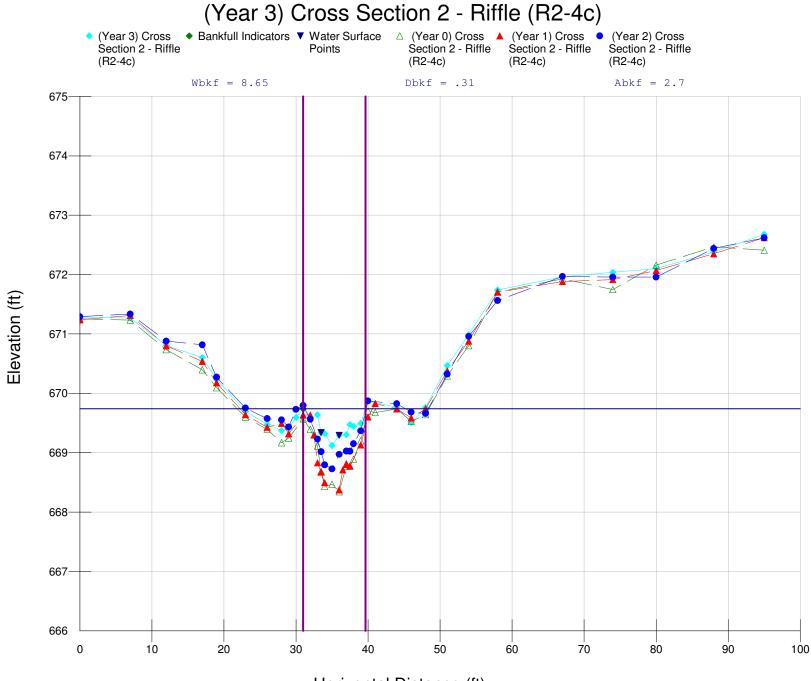
Year 3 Monitoring, October 2010

		ſ
		1
		1
		1

Year 4 Monitoring

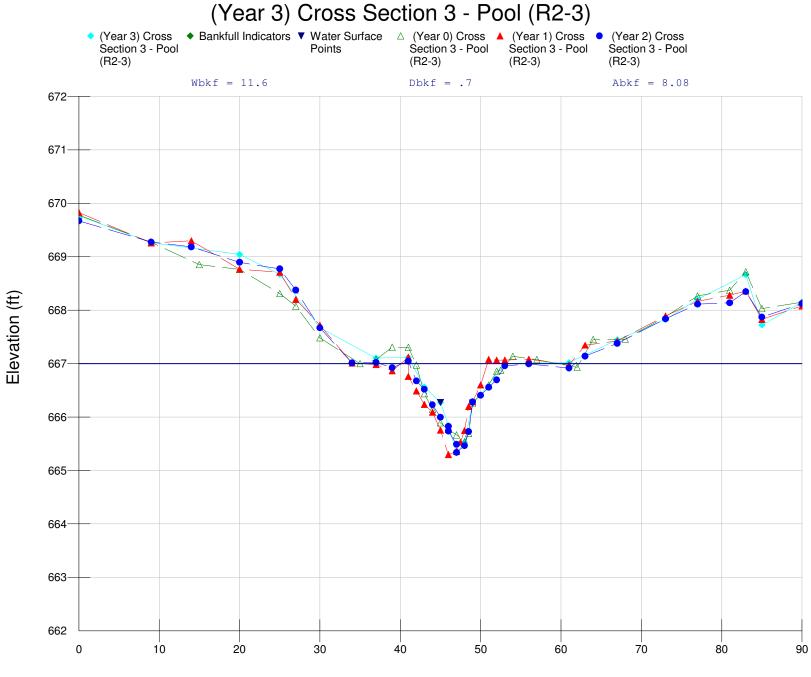
Horizontal Distance (ft)

Cross Section Name: (2-4b		(R2-4b)
Cross Section Data En	 try		
BM Elevation: Backsight Rod Reading	0 ft : 0 ft		
TAPE FS	ELEV	NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	674.403 673.575 672.719 671.71 671.528 671.498 671.688 671.688 671.688 671.452 671.155 670.755 670.875 670.98 671.162 671.162 671.293 671.293 671.293 671.435 671.57 671.409 671.338 671.995 672.888 673.175 673.535 673.486	GS GS GS GS GS GS GS LB GS LB GS LEW GS TW GS REW GS GS GS GS GS GS GS GS GS GS	
Cross Sectional Geome			
Floodprone Elevation Bankfull Elevation (f Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	(ft) 672.39 t) 671.57 40.09 9.33 4.3 0.41 0.82 22.76 3.81 9.53 0.4	Left Right 672.39 672.3 671.57 671.5 1.34 7.99 0.22 0.44 0.42 0.82 6.09 18.16 0.29 3.51 1.83 8.54 0.16 0.41 34.67 36.01 36.01 44	9 7



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Slope 0 0 Shear Stress (lb/sq ft) Movable Particle (mm)


Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

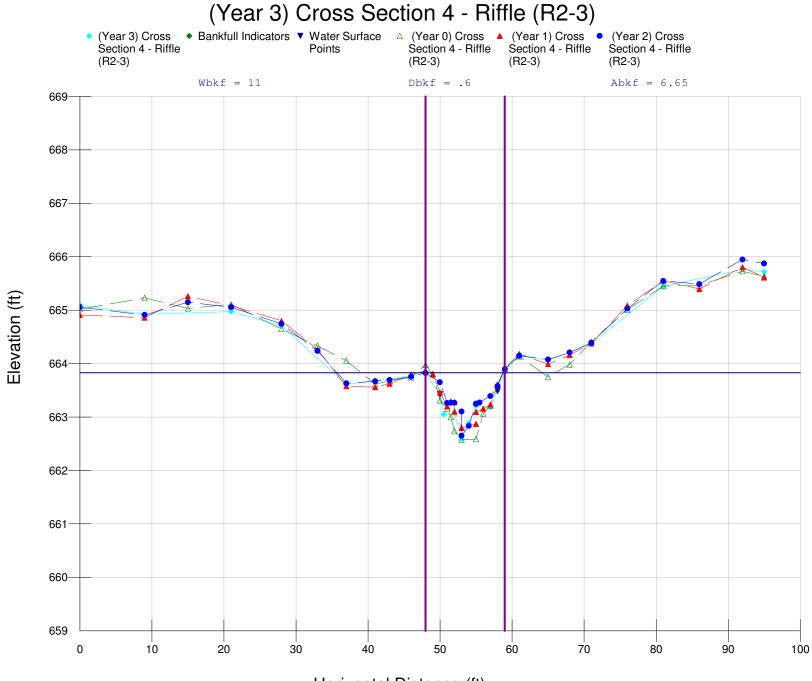
Reach Name: Cross Section	(Year R2-4c on Name: (Year : 10/01	3) Cross Se		k - Riffle (R2-40	c)
Cross Section	on Data Entry				
BM Elevation Backsight Re	n: od Reading:	0 ft 0 ft			
TAPE	FS	ELEV		NOTE	
$\begin{array}{c} 0 \\ 7 \\ 12 \\ 17 \\ 19 \\ 23 \\ 26 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 33 \\ 5 \\ 36 \\ 37 \\ 37 \\ 5 \\ 36 \\ 37 \\ 37 \\ 5 \\ 38 \\ 39 \\ 40 \\ 44 \\ 46 \\ 48 \\ 51 \\ 54 \\ 58 \\ 67 \\ 74 \\ 80 \\ 88 \\ 95 \end{array}$		671.285 671.267 670.809 670.602 670.24 669.694 669.477 669.374 669.374 669.737 669.59 669.638 669.335 669.322 669.12 669.292 669.303 669.473 669.444 669.495 669.868 669.766 669.766 669.508 669.761 670.47 670.985 671.74 671.962 672.039 672.102 672.378 672.679		GS GS	
Cross Section	onal Geometry				
	dth (ft) t Ratio (ft) th (ft) Ratio	Channel 670.36 669.74 32.2 8.65 3.72 0.31 0.62 27.9 2.7	Left 670.36 669.74 4.33 0.29 0.62 14.93 1.25		

Wetted Perimeter (ft)	8.86	5.02	4.97			
Hydraulic Radius (ft)	0.3	0.25	0.29			
Begin BKF Station	31	31	35.33			
End BKF Station	39.65	35.33	39.65			
Entrainment Calculations						
Entrainment Formula: Rosgen Modified Shields Curve						
slope	Channel	Left Side	Right Side			
	0	O	O			

Shear Stress (lb/sq ft) Movable Particle (mm)

Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

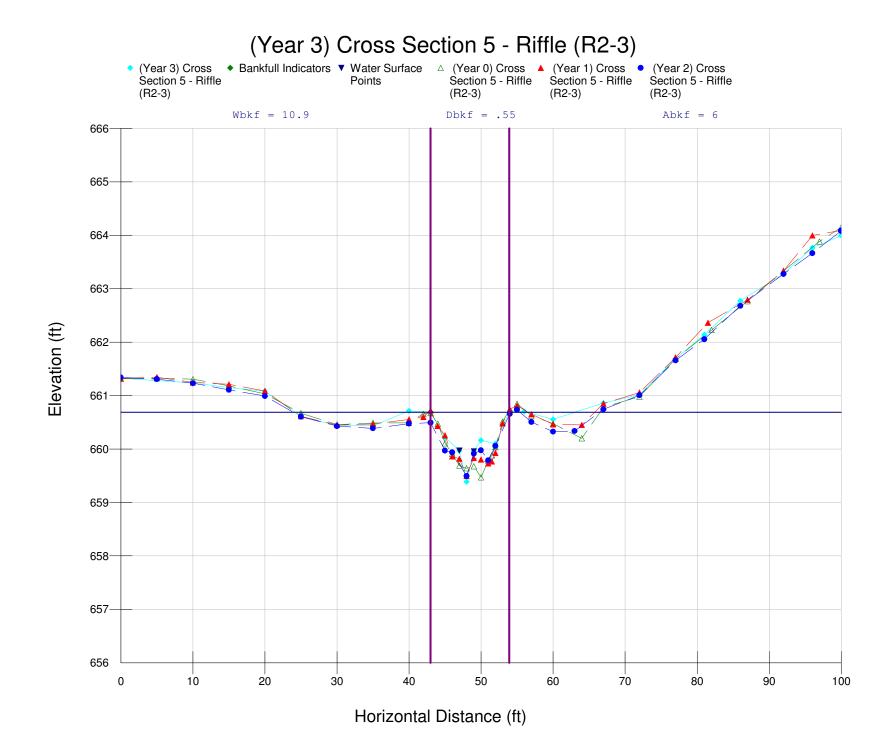

Reach Name: R2	ear 3) Cross Section 3					
Cross Section Data Ent	ry					
BM Elevation: Backsight Rod Reading:	0 ft 0 ft					
TAPE FS	ELEV	NOTE				
0 0 9 20 25 30 37 41 43 45 46 47 48 49 50 53 61 67 73 77 83 85 90	669.045 668.673 667.669 667.103 667.113 666.562 666.274 665.843 665.328 665.523 666.263 666.263 666.416 667.022 667.447 667.824 668.203 668.665	GS GS GS GS GS GS GS LB GS LEW GS LEW GS TW GS TW GS REW GS REW GS BKF GS GS GS GS GS GS GS GS GS GS				
Cross Sectional Geomet	ry					
		668.67 667 6.04 0.71 1.67 8.51 4.31 8.02 0.54 46.94				
Entrainment Calculatio	ns					

Entrainment Formula: Rosgen Modified Shields Curve

Channel

Left Side Right Side

Slope Shear Stress (lb/sq ft) Movable Particle (mm)


Horizontal Distance (ft)

RIVERMORPH CROSS SECTION SUMMARY

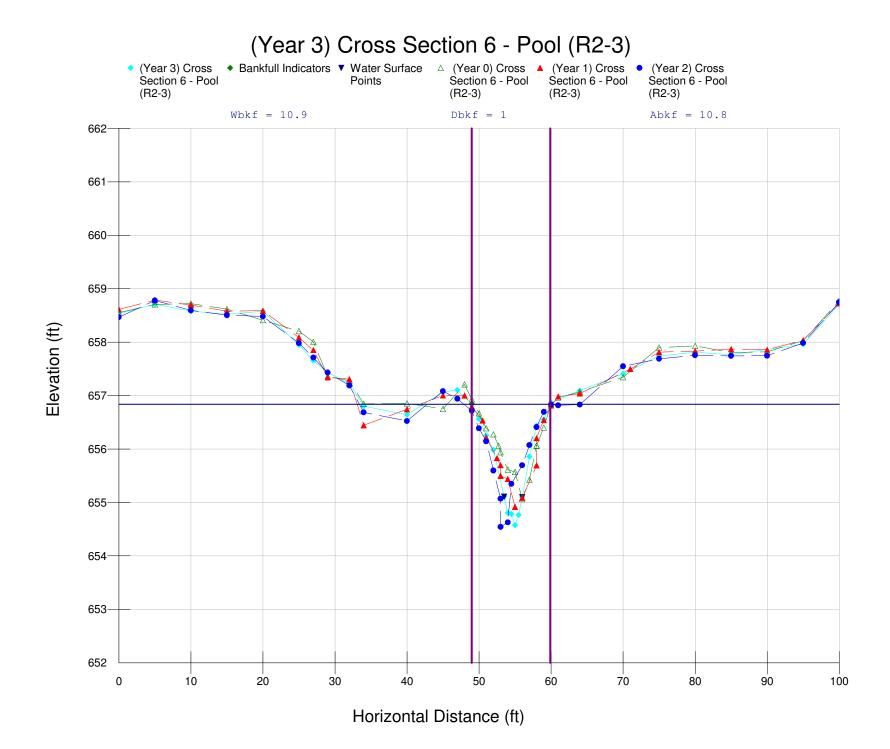
River Name: Reach Name: Cross Section Name: Survey Date:	R2 ALL (Year 3) C	ross Se			ffle (R2	-3)
Cross Section Data	Entry					
BM Elevation: Backsight Rod Readi	ng:	0 ft 0 ft				
TAPE FS		ELEV		ΝΟΤΕ	: 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Cross Sectional Geo						
Floodprone Elevatio Bankfull Elevation Floodprone Width (f Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq f Wetted Perimeter (f Hydraulic Radius (f Begin BKF Station End BKF Station	n (ft) 665 (ft) 663 (ft) 75. 11 6.9 0.6 1.2 18. (t) 6.6 (t) 11. (t) 0.5 48 59	07 88 98 1 4 33 55 47 8	0.62 1.24 8.87 3.43 6.89 0.5 48 53.5		665.07 663.83 5.5 0.58 1.09 9.48 3.21 6.76 0.48 53.5 59	
Entrainment Calcula	tions					
_						

Entrainment Formula: Rosgen Modified Shields Curve

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

RIVERMORPH CROSS SECTION SUMMARY

Reach Name Cross Sec	e: (Year e: R2 ALL tion Name: (Year te: 10/01/	3) Cross Se 2010	ction 5		3)
Cross Sec	tion Data Entry				
BM Elevat Backsight	ion: Rod Reading:	0 ft 0 ft			
TAPE	FS	ELEV		NOTE	
0 10 15 20 25 30 35 40 43 45 47 48 49 50 52 54 56 60 67 72 77 81 86 92 96 100	0	661.237 661.152 661.086 660.605 660.443 660.433		GS GS GS GS GS GS GS GS GS GS GS GS GS G	
Cross Sec	tional Geometry				
Bankfull Floodpron Bankfull M Entrenchm Mean Dept Maximum D Width/Dep Bankfull M Wetted Pe	e Width (ft) Width (ft) ent Ratio h (ft) epth (ft) th Ratio Area (sq ft) rimeter (ft) Radius (ft) Station	Channel 661.99 660.69 79.7 10.9 7.31 0.55 1.3 19.82 6 11.39	Left 661.99 660.69 5.45 0.59 1.3 9.24 3.21 6.79 0.47 43.01	Right 661.99 660.69 5.45 0.51 1.04 10.69 2.79 6.68 0.42 48.46	

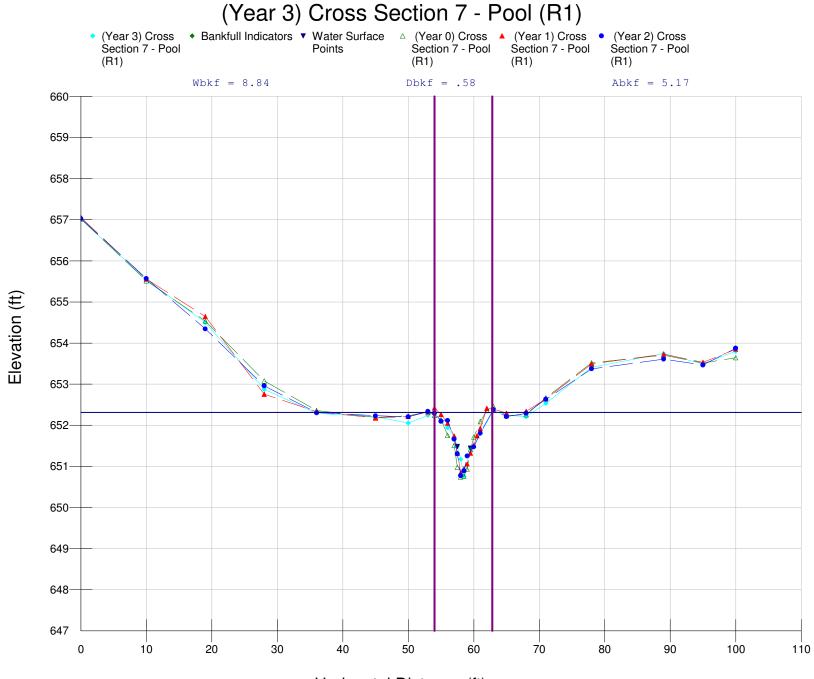

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side

Slope Shear Stress (lb/sq ft) Movable Particle (mm)

RIVERMORPH CROSS SECTION SUMMARY


Reach Name: R2 A Cross Section Name: (Yea	r 3) Reedy Fork LL r 3) Cross Sect 1/2010)
Cross Section Data Entry			
BM Elevation: Backsight Rod Reading:	0 ft 0 ft		
TAPE FS	ELEV	NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 658.536\\ 658.709\\ 658.581\\ 658.525\\ 658.576\\ 657.95\\ 657.654\\ 657.432\\ 657.223\\ 657.223\\ 656.801\\ 656.643\\ 657.069\\ 657.104\\ 656.844\\ 656.563\\ 655.983\\ 655.108\\ 654.809\\ 654.767\\ 655.1\\ 654.576\\ 654.767\\ 655.1\\ 655.859\\ 656.437\\ 655.52\\ 656.869\\ 657.093\\ 657.741\\ 657.811\\ 657.767\\ 657.965\\ 658.706\end{array}$		
Cross Sectional Geometry			
Floodprone Elevation (ft Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio		eftRight59.1659.156.84656.84.455.44.941.05.052.26.85.18	

Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	10.84 11.97 0.91 49.01 59.9	5.11 7.94 0.64 49.01 54.46	5.73 8.13 0.7 54.46 59.9				
Entrainment Calculations							
Entrainment Formula: Rosgen Modified Shields Curve							

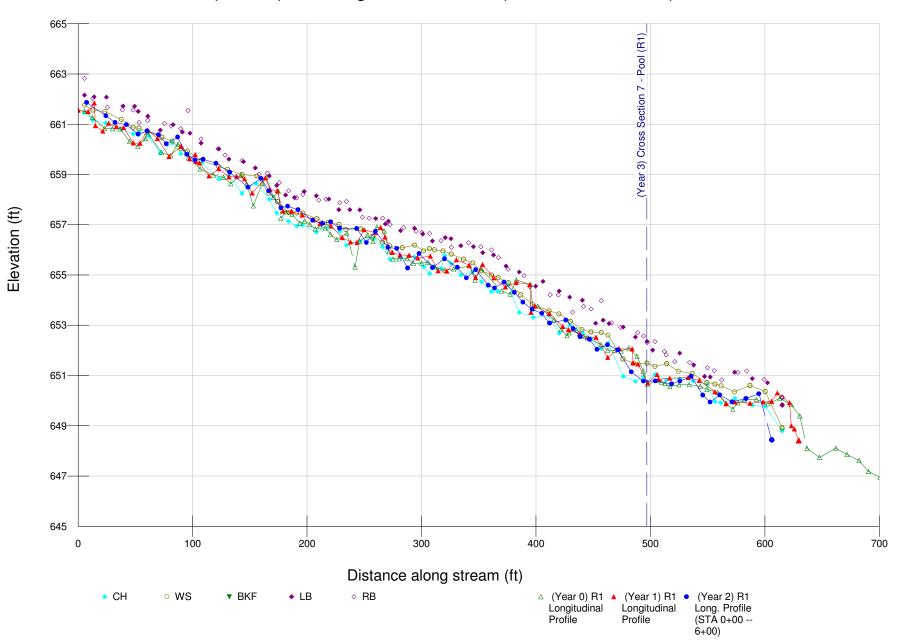
Entrainment Formula: Rosgen Modified Shields Curve

Channel Left Side Right Side

Slope Shear Stress (lb/sq ft) Movable Particle (mm)

Horizontal Distance (ft)

River Name: (Year 3) Reedy Fork Creek Reach Name: R1 Cross Section Name: (Year 3) Cross Section 7 - Pool (R1) Survey Date: 10/01/2010							
Cross Section Data Entry							
BM Elevation: Backsight Rod Readin	g:	0 ft 0 ft					
TAPE FS		ELEV		NOT	E		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Cross Sectional Geom	etry						
Floodprone Elevation Bankfull Elevation (Floodprone Width (ft Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft Wetted Perimeter (ft Hydraulic Radius (ft Begin BKF Station End BKF Station	(ft) 6 ft) 6) 7 8 8 0 1 1) 5) 9) 0 5	hannel 53.86 52.31 7.48 .84 .77 .58 .55 5.24 .17	Left 653.86 652.31 4.42 0.51 1.49 8.67 2.27 6.24		Right 653.86 652.31 4.42 0.66 1.55 6.7 2.9 6.26		



Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Slope 0 0 Shear Stress (lb/sq ft) Movable Particle (mm)

(Year 3) R1 Longitudinal Profile (STA 0+00 -- 6+00)

River Name: (Year 3) Reedy Fork Creek Reach Name: R1 Profile Name: (Year 3) R1 Long. Profile (STA 0+00 -- 6+00) Survey Date: 11/04/2010

Survey Data

DIST	СН	WS	BKF	LB	RB
5.5	661.466				
5.5 5.5 5.5		661.759			662.824
5.5 12.82	661.154			662.157	
12.872	001.134				662.024
12.893 13.965		661.556		662.091	
23.312	661 051	661.504		002.051	
24.081 24.663	661.051			662.076	
25.442 37.773		661.186			661.674
37.893	660.802	001.100			
38.604 39.242				661.721	661.571
48.061	660 614	660.871		001.721	
48.115 48.115	660.611				661.563
49.338 52.448				661.716 661.506	
53.173	660.69			001.300	
53.218 53.265		660.835			661.068
60.804					661.15
60.819 60.89		660.704		661.317	
61.931	660.519			660.762	
71.77 71.77	659.844			000.702	
73.111 75.355		660.478			661.028
81.318					660.931
82.125 82.46	660.262	660.323			
82.919 89.665				660.982	660 820
89.665	659.817				660.829
89.841 91.041		660.017		660.689	
95.55	659.816			000.005	
95.55 95.976		659.933			661.545
97.736				660.639	
107.303 107.419				660.247	660.409
107.446 107.996	659.451	659.554			
122.202	0J9.4JI				660.019
122.503		659.325			

123.013			660.016	
123.013	658.816		000.010	
128.433				659.768
130.565		659.197		
131.639			659.608	
131.639	658.948			
143.167				659.552
143.167 143.167	658.244	658.991		
144.526		010.991	659.508	
148.347	658.494		055.500	
154.834			659.258	
155.577	658.637			
156.091		658.939		
158.083				659.01
165.349		650 240		659.049
166.66		658.248		
167.033 167.033	658.013		658.938	
173.566	030.013		658.567	
173.566	657.465		050.507	
174.147		657.917		
175.794				658.673
181.214			658.182	
183.9				658.35
183.9	657.13	CE7 40E		
184.129 189.032		657.485	658.082	
190.918		657.466	038.082	
190.918		057.100		658.068
190.918	656.95			
195.961	656.987			
196.409		657.458		
196.412			650.33	658.203
197.477			658.32	
208.106 208.106	656.704		658.149	
208.621		657.235	030.149	
210.288		0071200		657.979
216.653				658.014
218.544		657.079		
218.77	656.901		650 010	
219.057			658.018	
227.783 228.067		657.006	657.597	
228.603	656.748	037.000		
228.603	050.710			657.875
233.984		656.807		
234.52	656.183			
234.52				657.923
237.408			657.598	
246.101	656 241		657.59	
246.101 246.645	656.341	656.836		
248.36		010.010		657.3
254.241				657.256
257.744		656.547		0071200
258.186	656.461			
259.921			657.248	
265.998	656.124			
265.998				657.262
266.065		656.294	657 021	
268.453 271.071			657.031 657.142	
272.124		656.162	057.142	
272.455	655.624			

272.455				657.002
281.719			656.763	057.002
281.719	655.707			
283.256		656.084		
284.44				656.882
293.595	655.718			
293.961		656 100	656.858	
294.031		656.183		656 727
295.268 300.396				656.737 656.693
301.151			656.628	010.091
301.944		655.96	030.020	
302.076	655.32	000100		
307.029				656.653
307.029	655.054			
307.029		656.041		
309.546			656.352	
310.436	655.336			
311.4		655.998		
313.964 317.101	655.249			656.364
317.339	655.249			030.304
318.837	055.245	655.959		
320.186	655.783			
320.755	0551705		656.486	
325.744	655.456			
325.744			656.443	
326.028		655.83		
326.153				656.101
334.399	654.994			
334.399			656.165	
336.711 341.085		655.622		656.284
344.644	655.12			030.204
344.831	055.12	655.478		
345.43		0551170	656.126	
351.866			0001220	656.119
352.344		655.165		
352.381	654.728			
353.557			655.886	
361.156	654 227			655.992
361.156	654.337			
361.156 362.89		655.003	655.794	
366.609	654.348		033.794	
367.074	014.140	654.895		
367.308		0511055		655.692
373.823			655.353	
375.674				655.229
375.674	654.601			
376.02		654.686		
385.362			655.116	
385.362	653.506			
386.697 389.69		654.207		654.971
394.71				654.537
396.805		653.836		554.557
397.773	653.315			
399.729			654.551	
406.125			654.744	
411.111	653.397			
411.519		653.566		CE 4 011
412.419				654.211
419.616		652 45		654.21
420.171 420.305		653.45	651 250	
+20.303			654.359	

420.305	652.689			
429.491 429.491	653.008		654.118	
430.205	055.000	653.156		
431.992 440.408		652.829		653.521
440.552	652.713	052.025		
440.552 441.555			653.995	653.749
448.172	652.482			
448.172 448.172		652.727		653.647
452.172		052.727	653.078	
457.109 457.109	652.059			653.98
457.109	052.055	652.711		
458.718 462.969		652.601	653.198	
463.181	652.294	052.001		
463.93 466.087			653.066	653.096
474.165				652.911
476.066		651.656	652.927	
476.309 476.309	650.96		032.927	
485.456		651.478	652.529	
486.92 486.92	650.764		032.329	
488.952				652.701 652.57
493.999 493.999	650.955			052.57
497.14 502.069	650.755	651.486	652.355 652.009	652.306
502.009		651.359	032.009	
504.065 504.065	651.04			652.348
512.358	031.04			651.956
513.756 514.049	650.822			651.819
514.259	030.022	651.473		
521.311 524.387		651.169		651.55
525.611		051.105	651.886	
525.611 534.325	650.88			651.514
536.468		651.077		011.114
537.13 537.833	650.783		651.419	
547.329			650.96	
549.475 549.475	650.632	650.715		
549.798		030.713		651.307
552.297 555.779			650.937	651.194
556.43	649.962			031.194
556.43 561.412	649.911	650.655		
561.768	049.911	650.588		
562.359		650 247		650.821
573.44 573.621		650.347	651.129	
573.97 576.467	650.085			651.126
584.144				651.126 651.175
587.09		650.601	650 070	
589.058			650.876	

589.058 649.819 599.306 650.844 649.771 600.245 600.42 650.36 602.322 650.711 615.178 648.807 648.911 649.824 650.126 Cross Section / Bank Profile Locations Туре Р Name Profile Station Name (Year 3) Cross Section 7 - Pool (R1)Riffle XS 497 Measurements from Graph Bankfull Slope: 0.01919 Variable Min Avg M Мах ------

 S riffle
 0.0114
 0.03961
 0.10621

 S pool
 0
 0
 0

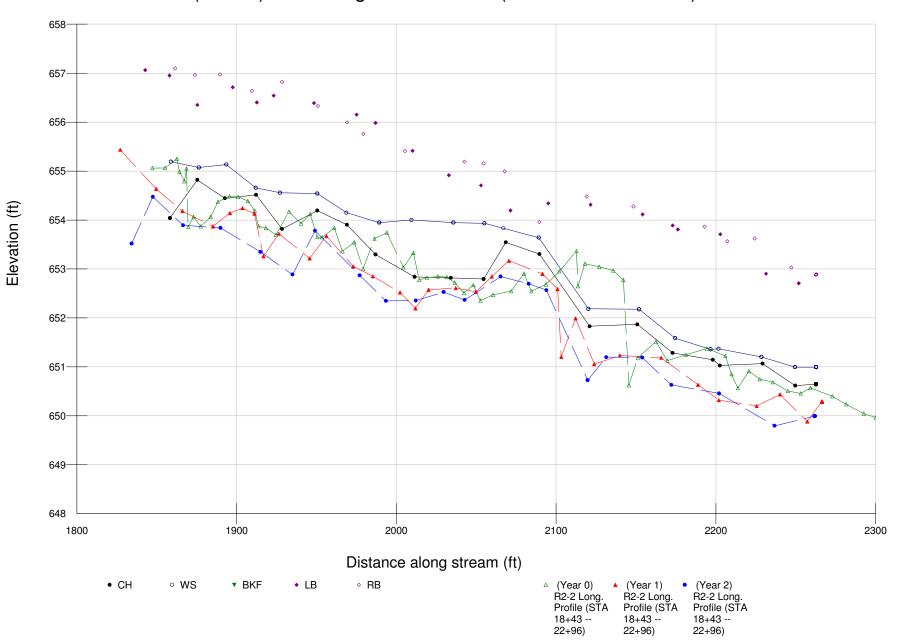
 S run
 0
 0
 0

 S glide
 0
 0
 0

 S glide
 0
 0
 0

 P - P
 16.81
 32.44
 50.93

 Pool length
 6.31
 11.43
 15.27


 Riffle length
 4.73
 8.78
 11.7

 0 32.44 11.43 8.79 Dmax riffle 0 0 0 Dmax pool 0 Dmax run 0 Dmax glide 0 Low bank ht 0 0 0 0 0 0 0 0 Low bank ht Length and depth measurements in feet, slopes in ft/ft. В RIVERMORPH PROFILE SUMMARY Notes _____ River Name: (Year 3) Reedy Fork Creek Reach Name: R1 Profile Name: (Year 3) R1 Long. Profile (STA 0+00 -- 6+00) Survey Date: 11/04/2010 DIST 5.5 LEW 12.893 LEW 23.312 LEW 37.773 LEW ^61 LEV LE' DIST Note _____ _____ 60.819 LEW 73.111 LEW 82.125 LEW 89.841 LEW 95.55 LEW 107.446 LEW 122.503 LEW 130.565 LEW 143.167 LEW 156.091 LEW 166.66 LEW 174.147 LEW

184.129

LEW

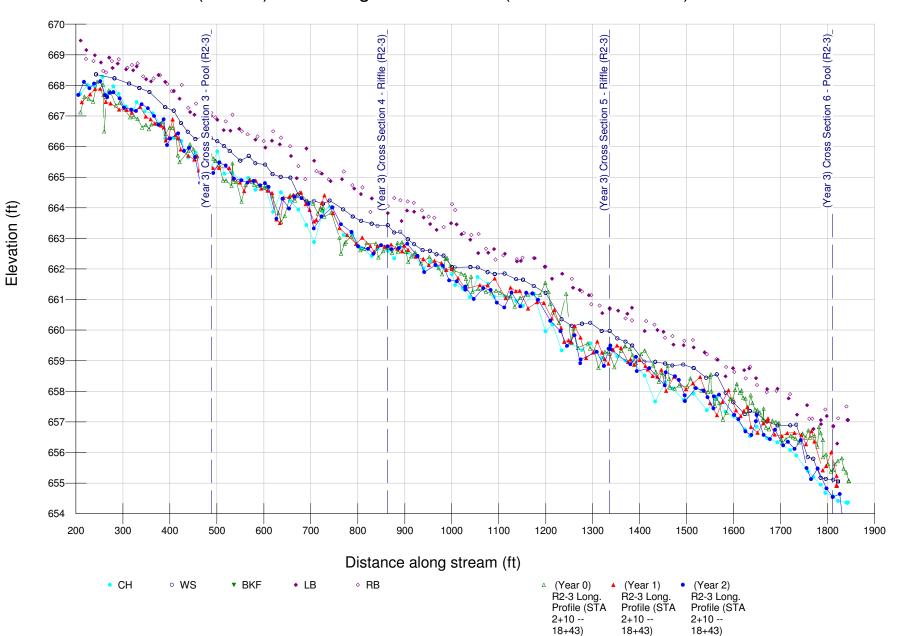
190.918	LEW		
196.409	LEW		
208.621	LEW		
218.544	LEW		
228.067	LEW		
233.984	LEW		
237.408	LEW		
246.645	LEW		
257.744	LEW		
266.065	LEW		
272.124	LEW		
283.256	LEW		
294.031	LEW		
301.944	LEW		
307.029	LEW		
311.4	LEW		
318.837			
326.028	LEW		
336.711	LEW		
344.831 352.344			
361.156			
367.074			
376.02	LEW LEW		
386.697			
396.805			
411.519			
420.171	LEW		
430.205	LEW		
440.408	LEW		
448.172	LEW		
457.109	LEW		
462.969	LEW		
476.066	LEW		
485.456	LEW		
497.14		ersect @ station	497
504.065	LEW		157
514.259	LEW		
524.387	LEW		
536.468	LEW		
549.475	LEW		
556.43	LEW		
561.768	LEW		
573.44	LEW		
587.09	LEW		
600.42	LEW		

(Year 3) R2-2 Longitudinal Profile (STA 18+43 -- 22+96)

RIVERMORPH PROFILE SUMMARY

River Name: (Year 3) Reedy Fork Creek Reach Name: R2-2 Profile Name: (Year 3) R2-2 Longitudinal Profile (STA 18+43 --Survey Date: 11/04/2010

Survey Data


DIST	СН	WS	BKF	LB	RB
1842.7589 1857.9769 1858.2369 1858.8719	654.04	655.19		657.064 656.952	
1873.8609 1875.4019		055.15		656.351	657.098 656.967
1875.4019 1875.4019 1876.3089 1889.5629	654.819	655.074		050.551	656.971
1892.6549 1893.5599 1897.5349	654.444	655.134		656.713	0001071
1909.4979 1911.9849 1912.2279	654.515	654.658			656.64
1912.6259 1923.1919 1927.1619		654.557		656.402 656.541	
1928.4569 1928.4569 1948.4049	653.817			656.389	656.823
1950.5349 1950.5349 1950.9019	654.193	654.54			656.33
1968.7409 1969.0589 1969.1489	653.904	654.15			655.997
1975.1089 1979.4129 1986.9589				656.153 655.983	655.762
1986.9589 1989.3059 2005.3449	653.296	653.948			655.409
2009.3669 2010.1029 2011.3779 2032.8559	652.838	654.001		655.415 654.915	
2032.8339 2034.1149 2035.7439 2042.6339	652.817	653.947		034.913	655.192
2052.9489 2054.6189 2054.6189	652.795			654.707	655.157
2055.1579 2067.0139 2067.7909		653.933 653.831			654.995
2068.5129 2071.4059 2089.1469	653.544	653.64		654.195	

2089.5519 653.305 653.955 2089.5519 2095.0579 654.341 654.479 2119.0989 2120.1909 652.185 2121.0119 651.828 2121.5729 654.313 2148.3829 654.279 2150.8229 651.869 2151.9759 652.177 2154.1229 654.114 2172.9729 651.285 2172.9729 653.889 2174.5249 651.585 2176.2129 653.807 2192.9209 653.865 2196.6869 651.357 2198.1319 651.144 2201.6799 651.371 2202.5179 651.027 2202.7639 653.708 2207.1419 653.566 2224.3119 653.624 2228.5149 651.203 2229.2389 651.066 2231.4219 652.902 2247.2559 653.029 2249.5829 650.994 2249.7029 650.615 2251.8849 652.708 2262.7349 650.646 650.994 652.886 Cross Section / Bank Profile Locations Profile Station Name Туре Measurements from Graph Bankfull Slope: 0.01108 Variable Min Avg Max 0.01586 0.02499 0 0

S riffle 0.00929 S pool 0 S run 0 0 0 s glide 0 0 0 59.54 81.09 105.26 P – P Pool length 17.37 Riffle length 9.92 32.25 55.64 16.66 22.33 Dmax riffle 0 0 0 0 Dmax pool 0 0 0 0 Dmax run 0 Dmax glide 0 0 0 Low bank ht 0 0 0 Length and depth measurements in feet, slopes in ft/ft. А RIVERMORPH PROFILE SUMMARY Notes

River Name: (Year 3) Reedy Fork Creek Reach Name: R2-2 Profile Name: (Year 3) R2-2 Longitudinal Profile (STA 18+43 --Survey Date: 11/04/2010 DIST Note

----1858.8719 LEW 1876.3089 LEW 1893.5599 1911.9849 LEW LEW 1927.1619 LEW 1950.5349 1968.7409 LEW LEW 1989.3059 LEW 2009.3669 LEW 2035.7439 LEW 2055.1579 LEW 2067.0139 LEW 2089.1469 LEW 2120.1909 LEW 2151.9759 LEW 2174.5249 LEW 2196.6869 2201.6799 LEW LEW 2228.5149 LEW 2249.5829 LEW 2262.7349 LEW

(Year 3) R2-3 Longitudinal Profile (STA 2+10 -- 18+43)

RIVERMORPH PROFILE SUMMARY

River Name: (Year 3) Reedy Fork Creek Reach Name: R2-3 Profile Name: (Year 3) R2-3 Long. Profile (STA 2+10 -- 18+43) Survey Date: 11/04/2010

Survey Data

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DIST	СН	WS	BKF	LB	RB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		667.727			669 467	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221.4459					668.866
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		668.013			669.156	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	237.4579					668.798
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		667.966			668.987	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242.8469		668.358		669 75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		668.279			000.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265.5519	667.665				000.420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					668.909	668 794
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	278.0319	~~~ ~~~			668.571	0001751
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		667.966				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	289.0629				668.713	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		667.723				668.854
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		667 206			668.524	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		007.290				668.578
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			668.058			668 667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	321.9699				668.495	000.007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
335.3149 667.912 343.1609 668.295 346.6959 667.147 349.4609 668.204 356.6339 667.785 359.9759 668.13	329.5059	0071151			668.621	
343.1609 668.295 346.6959 667.147 349.4609 668.204 356.6339 667.785 359.9759 668.13			667.912			668.722
349.4609 668.204 356.6339 667.785 359.9759 668.13	343.1609					668.295
356.6339 667.785 359.9759 668.13		667.147			668.204	
			667.785			
	363.4689	667.093			000.13	
365.2629 668.229 375.9149 668.341					668 3/1	668.229
379.1519 668.333	379.1519				000.341	668.333
380.7279 666.744 390.1889 666.264						
390.1889 667.288	390.1889	000.204				
390.1889 668.117 394.4909 668.054					668.117	668.054
404.0549 667.812	404.0549					
408.4539 667.171 408.5649 666.278		666.278				

408.5649 667.817 420.8459 667.565 423.7609 666.772 424.1959 425.2499 666.178 668.016 438.1969 666.481 439.0379 665.647 439.0379 667.268 443.0439 667.13 452.2659 667.04 454.4289 666.245 455.1609 665.791 455.8319 667.408 472.0079 667.265 473.7829 473.7829 665.427 667.495 474.5209 666.343 488.0689 665.328 666.274 667.004 667.113 496.6859 666.956 501.1109 665.84 501.1109 666.174 501.1109 666.878 514.7339 666.539 515.5539 666.017 665.112 516.0849 518.7759 666.826 527.8839 665.85 528.9389 666.521 533.2799 667.045 533.2799 665.136 547.9639 666.579 549.8549 665.537 550.9359 664.899 553.2039 666.504 565.4009 666.402 567.0709 664.972 567.8579 568.1639 665.691 582.1639 666.228 582.1639 664.585 582.1639 665.453 586.5989 666.331 599.6989 666.182 602.9019 665.41 603.0699 665.969 603.1579 664.655 617.3009 666.191 618.6829 665.099 619.8859 666.504 619.8859 663.863 634.0879 666.075 636.0639 665.009 636.5119 666.291 636.5119 664.503 655.9319 666.013 655.9319 664.23 656.6189 664.981 665.692 657.9119 670.0849 664.966 673.2619 664.426 673.5749 663.943 673.5749 665.363 688.3839 690.7609 664.937 663.434 690.7609 665.938 690.7609 664.202

706.8659 664.228 707.2999 662.879 707.2999 665.538 712.2239 665.197 719.8979 665.148 723.5919 665.115 725.9139 664.13 725.9139 738.2459 663.883 664.925 740.1319 664.027 740.2919 664.236 742.0659 664.872 766.4119 664.935 768.8959 663.95 770.1999 665.186 770.1999 663.104 788.4549 663.135 788.4549 664.737 789.4969 792.2989 663.709 664.627 806.7219 664.448 807.2319 663.571 808.1169 662.684 809.8779 664.667 826.9639 663.866 829.8369 664.304 829.8369 662.424 829.8369 663.477 842.3019 663.408 842.3019 842.3019 662.665 664.215 846.8709 664.176 863.9259 662.592 663.426 663.828 664.057 877.6899 662.344 877.6899 664.317 877.6899 663.189 890.4149 663.212 890.6129 664.248 890.6129 662.711 893.0839 663.567 904.7999 663.909 906.1439 664.207 906.5929 662.528 906.5929 662.97 919.1689 664.164 919.8799 663.87 920.0509 662.808 920.3299 662.432 936.5569 663.913 938.0699 662.614 940.1519 662.014 940.1519 663.684 950.6519 663.709 953.6139 662.59 954.1699 662.242 954.1699 663.468 962.7999 663.675 967.5709 662.478 967.7649 967.7649 663.277 662.108 982.1279 662.051 982.5129 662.431 982.7359 998.5199 663.369 663.497 1000.7719 664.117 1000.7719 661.825

1000.7719 662.062 1006.5599 662.053 1007.2519 661.476 1007.2829 1010.2999 1020.7989 1023.4459 661.363 1025.6559 1038.9259 661.079 1039.4479 1039.7709 662.063 1041.6809 1055.2489 661.733 1055.4209 662.046 1056.2679 1057.1479 1072.9239 1076.5079 661.895 1077.6839 1077.6839 661.512 1090.0679 1090.4239 661.088 1091.6109 661.834 1093.2599 1109.8349 1112.1689 661.118 1112.5659 661.845 1113.2029 1137.1089 660.953 1137.1089 661.664 1138.4799 1138.8549 1147.2669 1150.7099 1151.3529 660.79 1151.6119 661.644 1174.9069 1174.9069 661.44 1174.9069 661.184 1176.5809 1197.8979 1199.5279 1199.5419 659.961 1199.9719 661.215 1213.4259 1214.2579 660.186 1233.9739 659.334 1233.9739 660.354 1235.1379 1255.5919 1255.6169 660.138 1255.9349 659.557 1258.1369 1272.3979 1277.2649 1277.2649 659.346 1277.2649 660.207 1291.8999 1295.0189 660.239 1295.2329 659.569 1296.8949 1296.9799 1314.7669 1319.3309 659.971 1320.3239 1320.3239 659.095

663.925 663.459 663.136 663.174662.956 663.112 662.519 663.143 662.663 662.529 662.65 662.308 662.445 662.497 662.317 662.246 662.265 662.368 662.356 662.353 662.074 662.076 661.682 661.842 661.68 661.387 661.312 661.264 661.141 661.143 660.844 660.805 660.555

1336.2509 659.388 659.97 1352.1929 659.134 1352.4319 659.729 1354.3289 1369.9479 1369.9479 659.622 1369.9479 659.001 1373.8309 1383.6339 1383.6379 1383.8839 658.985 1383.9459 659.5 1409.7829 658.964 1410.5269 658.516 1410.5269 1413.9019 1431.4169 1432.9159 657.665 1433.2339 658.96 1437.8019 1450.6889 1454.1019 658.292 1454.1019 1454.3069 658.909 1469.6619 1469.6619 658.093 1469.6619 658.842 1471.8859 1492.7609 658.873 1493.5729 657.715 1493.5729 1495.1109 1513.1999 1514.9999 1514.9999 657.925 1515.0639 658.759 1538.2309 1541.6089 658.443 1542.9509 1542.9509 657.38 1563.4369 1563.4369 657.789 1564.1339 658.553 1565.8559 1582.2839 657.334 1582.6909 657.95 1583.3139 1583.95691598.70491599.2979 657.639 1599.2979 657.19 1601.5269 1622.4819 1623.6459 657.258 1623.6759 656.757 1625.5559 1633.0829 1634.8329 656.527 1634.8329 657.353 1635.2239 1647.7149 1649.4219 656.839 1649.7239 657.264 1649.7769 1670.3549 1671.1599 657.011

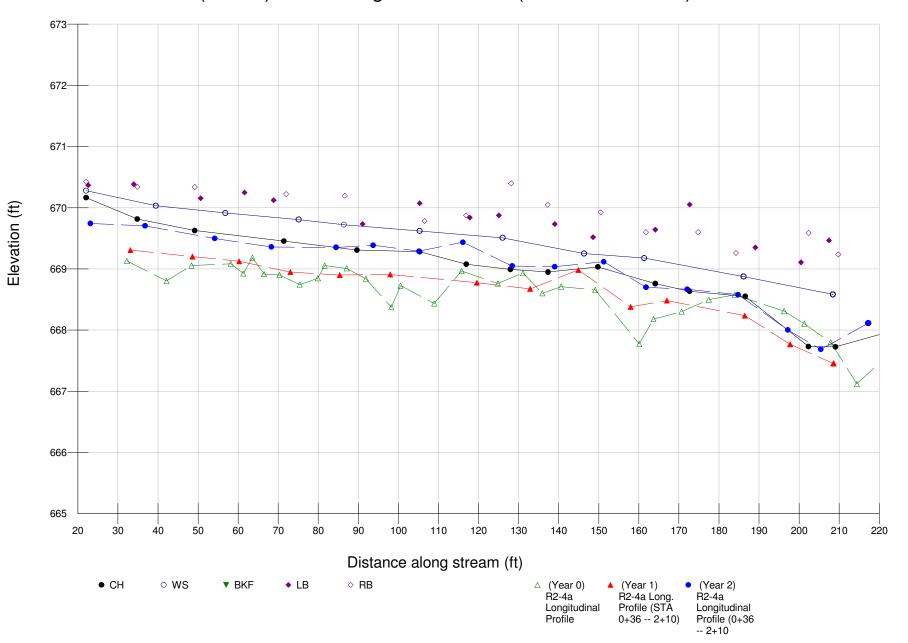
660.717 660.692 660.637 660.383 660.535 660.32 660.733 659.97 660.298 660.18 660.004 659.947 659.753 659.806 659.527 659.507 659.653 659.682 659.434 659.272 659.212 659.052 659.03 658.489 658.797 658.755 658.637 658.692 658.426 658.751 658.807 658.431 658.206 657.974

1671.3109 658.072 1671.3109 656.468 658.019 1691.0989 1693.3029 656.331 1693.3919 658.084 1693.4399 656.883 1717.0299 657.769 1720.2699 657.907 1720.3929 656.076 1720.5999 656.884 1733.2899 655.901 1733.2899 656.906 1734.7949 657.238 1756.1989 657.547 1757.9989 1758.1679 655.391 655.848 1761.1229 657.102 1767.3199 657.105 1769.4099 655.794 1769.8589 656.769 1769.8589 655.189 1785.2699 654.947 1785.3089 655.171 657.061 1785.6299 1785.8029 656.929 1795.1369 657.408 1795.1369 654.676 1796.0309 655.138 1798.1229 657.193 1811.9979 654.576 655.108 656.869 656.844 1820.3669 656.291 1822.4319 654.414 1822.4319 657.12 1822.4319 655.053 1840.0569 657.506 1840.0569 654.364 1840.0879 1842.7589 654.364 657.064 Cross Section / Bank Profile Locations Name Туре

Measurements from Graph

NameTypeProfile Station(Year 3) Cross Section 3 - Pool (R2-3)Pool XS488(Year 3) Cross Section 4 - Riffle (R2-3)Riffle XS863(Year 3) Cross Section 5 - Riffle (R2-3)Riffle XS1336(Year 3) Cross Section 6 - Pool (R2-3)Pool XS1811

Bankfull Slope	0.00795		
Variable	Min	Avg	Мах
S riffle S pool S run S glide P - P Pool length Riffle length Dmax riffle Dmax pool Dmax run Dmax glide	0.00357 0 0 36.15 8.71 9.02 0 0 0	0.01071 0 0 63.4 19.84 15.38 0 0 0 0	0.02243 0 0 93.99 25.77 22.13 0 0 0 0


Low bank ht 0 0 0 Length and depth measurements in feet, slopes in ft/ft. B

RIVERMORPH PROFILE SUMMARY

Notes

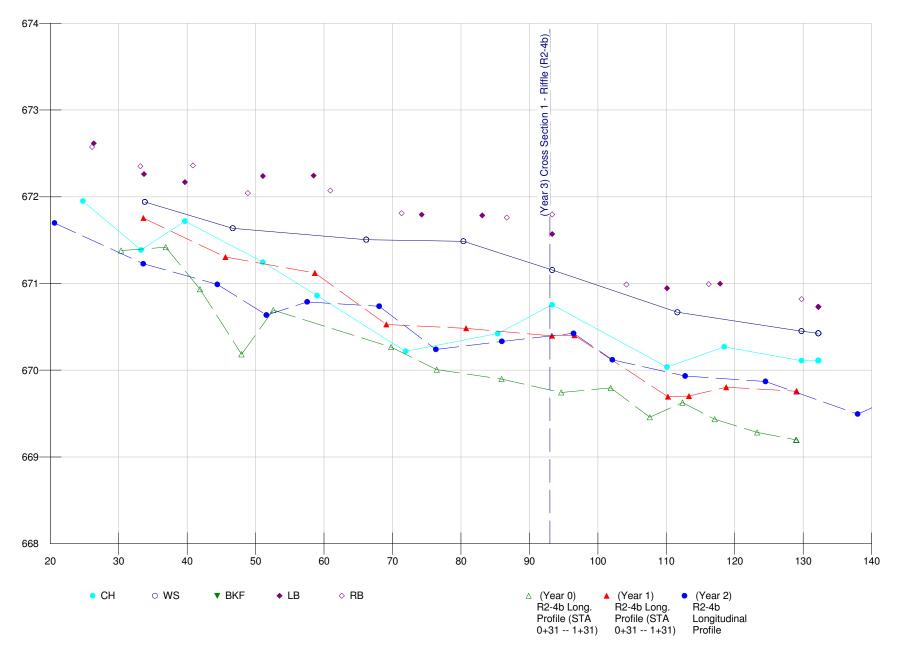
River Name: Reach Name: Profile Name: Survey Date:	(Year 3) Reedy Fork Creek R2-3 (Year 3) R2-3 Long. Profile (STA 2+10 18+43) 11/04/2010
DIST NO	ote
242.8469 LE 282.3009 LE 313.4089 LE 356.6339 LE 390.1889 LE 408.4539 LE 408.4539 LE 423.7609 LE 438.1969 LE 474.5209 LE 474.5209 LE 488.0689 XS 501.1109 LE 515.5539 LE 527.8839 LE 602.9019 LE 618.6829 LE 636.0639 LE 706.8659 LE 725.9139 LE 740.2919 LE 789.4969 LE 807.2319 LE 807.2319 LE 803.9259 XS 877.6899 LE 906.599 LE 907	 TW Intersect @ station 488 TW Intersect @ station 863 TW Intersect @ station 863

1174.9069 1199.9719 1233.9739 1255.6169 1277.2649 1295.0189 1319.3309 1336.2509 1352.4319 1369.9479 1369.9479 1369.9479 1383.9459 1409.7829 1409.7829 1433.2339 1454.3069 1469.6619 1492.7609 1515.0639 1541.6089 1541.6089 1544.1339 1583.3139 1599.2979 1623.6459 1634.8329 1649.7239 1671.1599 1693.4399	LEW LEW LEW LEW LEW LEW LEW LEW LEW LEW	τw	Intersect	Q	station	1336
1811.9979 1822.4319 1840.0879		ΤW	Intersect	Q.	station	1811

(Year 3) R2-4a Longitudinal Profile (STA 0+36 -- 2+10)

RIVERMORPH PROFILE SUMMARY

River Name: (Year 3) Reedy Fork Creek Reach Name: R2-4a Profile Name: (Year 3) R2-4a Long. Profile (STA 0+36 -- 2+10) Survey Date: 11/04/2010

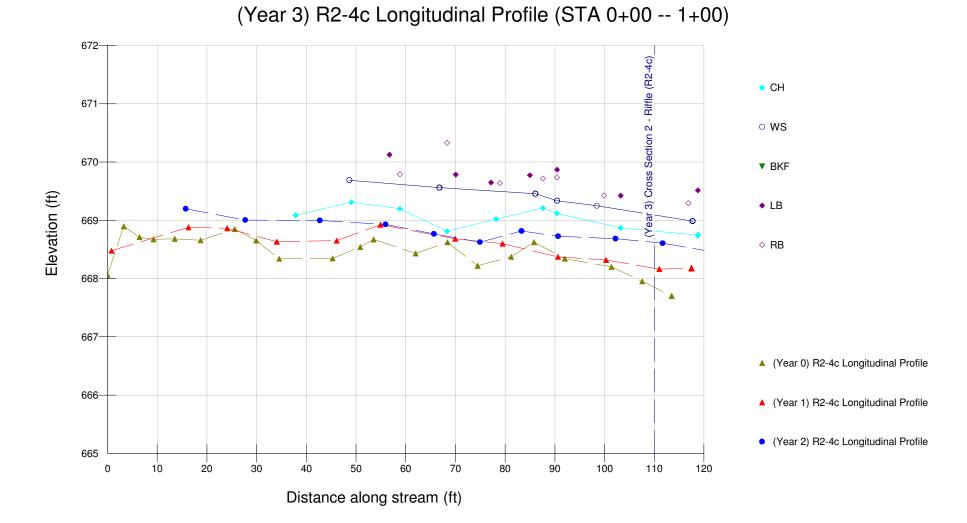

Survey Data

DIST	СН	WS	BKF	LB	RB
22.0839 22.0839 22.0839 22.0839 22.5679	670.165	670.278		670.369	670.425
33.9449 34.8319 34.8319	669.816			670.385	670.344
39.4739 49.1579 49.1579	669.627	670.032			670.339
50.6249 56.7779 61.5879		669.916		670.156 670.25	
68.8589 71.4099 71.9529	669.456			670.123	670.223
75.1189 86.3979 86.6019		669.808 669.723			670.197
89.6419 91.0629 105.2989	669.31 669.282			669.734	
105.2989 105.2989 106.5329		669.621		670.073	669.783
116.9049 116.9329 117.8119	669.077			669.839	669.874
125.0759 125.9949 127.9589	668.991	669.509		669.876	
128.1529 137.2619 137.3359	668.949				670.399 670.052
139.0049 146.3449 148.5839		669.252		669.733 669.519	
149.8059 150.4829 161.3259	669.033	669.178			669.925
161.7519 164.0989 164.0989	668.76			669.642	669.602
172.6769 172.6769 174.8049	668.635			670.054	669.603
184.2299 186.1429 186.5639	668.551	668.876			669.262
180.0679	000.331			669.352	

202.3489 207.4649 208.4299 209.0929 6 209.7949 222.2259 224.8099 6 Cross Secti Name	on / Bank Profile	669.467 669.156 Locations	59.586 59.236 Profile Station
Measurement	s from Graph		
Bankfull Sl	ope: 0.00854		
Variable		Avg	Max
Dmax pool Dmax run Dmax glide Low bank ht	0 0 2 0 depth measurements	0 0 0 0 in feet, slope	o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	RIVERMO	RPH PROFILE SUN Notes	4MARY
River Name: Reach Name: Profile Nam Survey Date	R2-4a ne: (Year 3) R2-4a		(STA 0+36 2+10)
DIST	Note		
22.0839 39.4739 56.7779 75.1189 86.3979 105.2989 125.9949 146.3449 161.3259 186.1429 208.4299	LEW LEW LEW LEW LEW LEW LEW LEW LEW		

(Year 3) R2-4b Longitudinal Profile (0+31 -- 1+31)

RIVERMORPH PROFILE SUMMARY


River Name: (Year 3) Reedy Fork Creek Reach Name: R2-4b Profile Name: (Year 3) R2-4b Long. Profile (0+31 -- 1+31) Survey Date: 11/04/2010

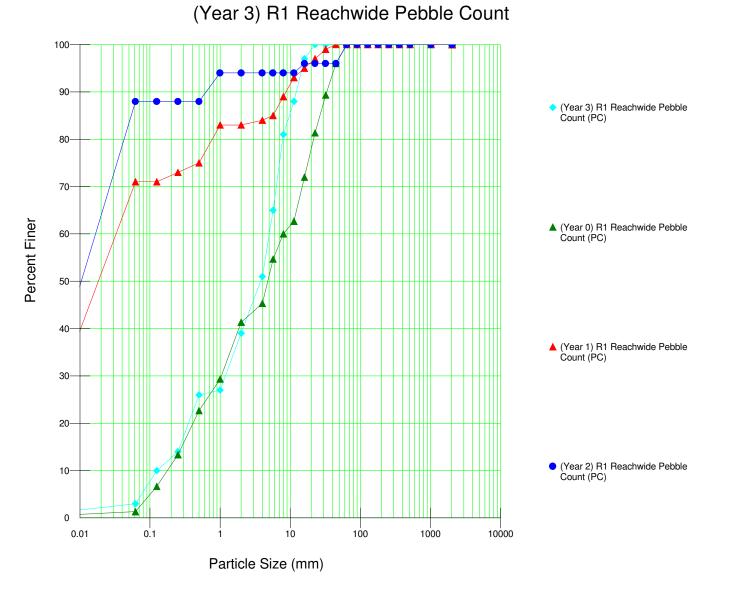
Survey Data

DIST	СН	WS	BKF	LB	RB	
24.7729 26.1089 26.3519	671.949			672.616	672.574	
33.1549 33.2439	671.386			0721010	672.352	
33.6859 33.8149	0711500	671.94		672.261		
39.6669 39.6669	671.719			672.168		
40.8359 46.6639	•• =•• =•	671.636			672.361	
48.8559 51.0579	671.246				672.042	
51.0579 58.4799	•• =• = • •			672.238 672.244		
58.9809 60.9169	670.86				672.072	
66.1579 71.3299		671.504			671.81	
71.9169 74.2639	670.218			671.794		
80.3609 83.1039		671.487		671.785		
85.3599 86.6849	670.422				671.76	
93.3379 104.1769		671.155		671.57	671.796 670.989	
$110.1119 \\ 110.1119$	670.036			670.945		
$111.6169 \\ 116.2029$		670.668			670.993	
117.8579 118.4709	670.269			670.998		
129.7589 132.2229	670.11 670.11	670.45 670.425		670.731	670.82	
Cross Sec	tion / B	ank Prof	ile Loca	tions		
Name				Туре		Profile Station
(Year 3)	Cross Se	ction 1	- Riffle	(R2-4b)I	Riffle XS	93
Measureme	nts from	Graph				
Bankfull	slope:	0.015	39			
Variable	Mi	n 	Avg		Max	
s riffle	0.	02213	0.0	245	0.02686	

S pool S run S glide P - P Pool length Riffle leng Dmax riffle Dmax run Dmax glide Low bank ht Length and	gth 7.18 e 0 0 0 0 0	0 0 38.48 9.47 7.68 0 0 0 0 0 0 0 0 5 in feet, s	0 0 38.89 14.62 8.17 0 0 0 0 0 slopes in ft/ft.	
В		ORPH PROFILE		
		OKFII FROFILL		
		Notes		
Reach Name	ne: (Year 3) R2-4b		ile (0+31 1+31)	
DIST	Note			
80.3609	LEW LEW LEW LEW XS1 - TW Intersec	+ @ station	02	

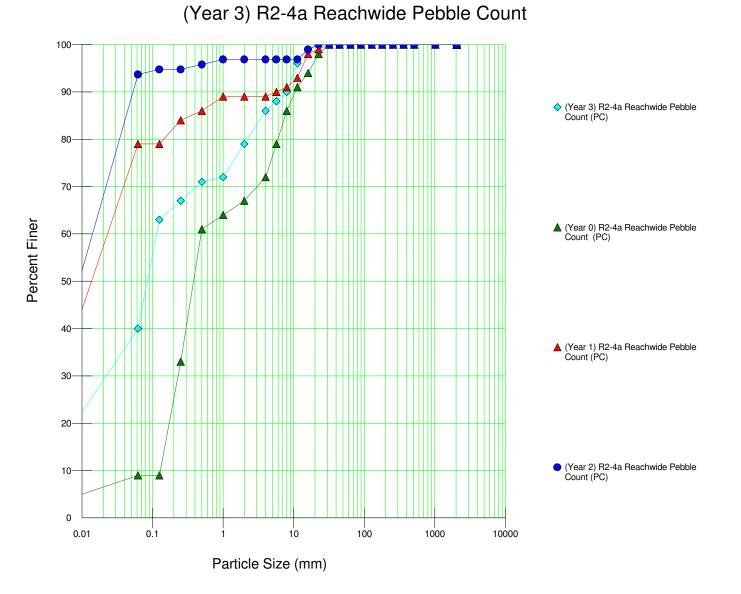
RIVERMORPH PROFILE SUMMARY

River Name: (Year 3) Reedy Fork Creek Reach Name: R2-4c Profile Name: (Year 3) R2-4c Long. Profile (STA 0+00 -- 1+00) Survey Date: 11/19/2010


Survey Data

DIST	СН	WS	BKF	LB	RB	
37.843 48.679 49.056 49.056	669.085 669.31	669.687				
50.505 56.745 58.841 58.841 66.782	669.196	669.56		670.126	669.79	
68.34 68.34 70.056 77.173	668.812			669.783 669.648	670.33	
78.166 78.933 84.986 86.09	669.02	669.455		669.772	669.639	
87.606 87.606 90.455 98.435 99.897	669.209 669.12	669.335 669.249		669.868	669.714 669.737 669.426	
99.897 103.234 103.234 116.861 117.694	668.868	668.985		669.423	669.293	
118.78 118.78	668.744			669.513		
Cross Sec Name	LION / B	ank Proi	TTE LOCA	Type		Profile Station
(Year 3)	Cross Se	ction 2	- Riffle		Riffle XS	110
Measureme	nts from	Graph				
Bankfull	slope:	0				
Variable	Mi	n	Avg		Мах	
S riffle S pool S run S glide P - P Pool leng Riffle le Dmax riff	0 0 30 th 11		0.0 0 0 38. 11. 6.2 0	7	0.01847 0 0 45.6 11.7 8.05 0	

Dmax pool Dmax run	0 0	0 0	0 0	
Dmax glide	0	0	0	
Low bank ht	0	0	0	
_ 0	pth measurements	s in feet, slo	opes in ft/ft.	
В				
	RIVERMO	ORPH PROFILE S	SUMMARY	
		Notes		
	<i>.</i>			
	(Year 3) Reedy	Fork Creek		
Reach Name:	_			
		Long. Profile	e (STA 0+00 1	+00)
Survey Date:	11/19/2010			


DIST Note 48.679 LEW 66.782 LEW 86.09 LEW 90.455 XS2 - TW Intersect @ station 90 98.435 LEW 117.694 LEW

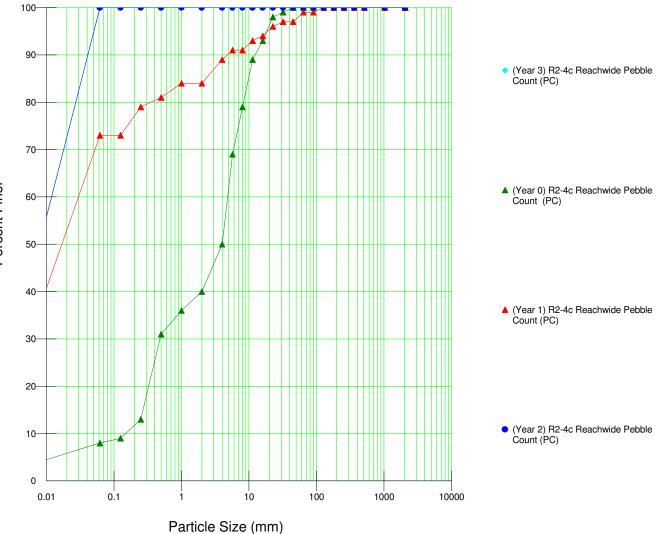
RIVERMORPH PARTICLE SUMMARY

River Name: Reach Name: Sample Name: Survey Date:	(Year 3) Reedy Fork Creek R1 (Year 3) R1 Reachwide Pebble Count 10/06/2010				
Size (mm)	тот #	ITEM %	CUM %		
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$ \begin{array}{r} 3 \\ 7 \\ 4 \\ 12 \\ 12 \\ 12 \\ 14 \\ 16 \\ 7 \\ 9 \\ 3 \\ 0 \\$	3.00 7.00 4.00 12.00 12.00 12.00 12.00 14.00 16.00 7.00 9.00 3.00 0.00	3.00 10.00 14.00 26.00 27.00 39.00 51.00 65.00 81.00 88.00 97.00 100.00		
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.29 1.67 3.83 9.41 14.96 22.6 3 36 61 0 0				



R	RIVERMORPH	PARTICLE	SUMMARY

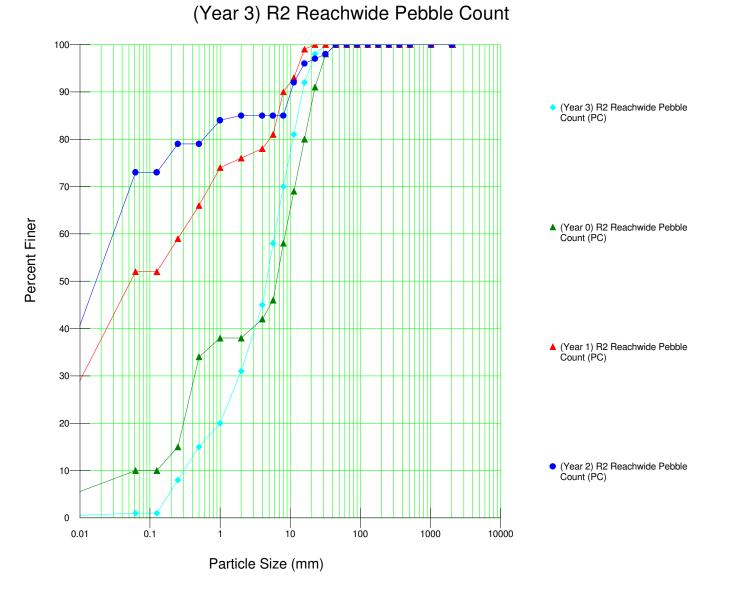
River Name: Reach Name: Sample Name: Survey Date:	(Year 3) R2-4a		
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	40 23 4 1 7 7 2 2 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.00 23.00 4.00 4.00 1.00 7.00 2.00 2.00 6.00 3.00 1.00 0.	$\begin{array}{c} 40.00\\ 63.00\\ 67.00\\ 71.00\\ 72.00\\ 79.00\\ 86.00\\ 88.00\\ 90.00\\ 90.00\\ 90.00\\ 99.00\\ 100$
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.03 0.05 0.09 3.43 10.75 22.6 40 39 21 0 0 0		



(Year 3) R2-4b Reachwide Pebble Count

RIVERMORPH PARTICLE SUMMARY

River Name: Reach Name: Sample Name: Survey Date:	(Year 3) Reedy R2-4b (Year 3) R2-4b 10/06/2010		
Size (mm)	тот #	ITEM %	СИМ %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	11 2 5 0 23 19 11 6 6 5 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 11.00\\ 2.00\\ 5.00\\ 5.00\\ 0.00\\ 23.00\\ 19.00\\ 11.00\\ 6.00\\ 6.00\\ 5.00\\ 6.00\\ 1.00\\ 0.00\\ $	$\begin{array}{c} 11.00\\ 13.00\\ 18.00\\ 23.00\\ 23.00\\ 23.00\\ 65.00\\ 76.00\\ 82.00\\ 82.00\\ 88.00\\ 93.00\\ 99.00\\ 100.$
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.2 1.52 2.42 9.1 18.2 32 11 35 54 0 0 0		


(Year 3) R2-4c Reachwide Pebble Count

Percent Finer

RIVERMORPH PARTICLE SUMMARY

River Name: Reach Name: Sample Name: Survey Date:	(Year 3) Reedy R2-4c (Year 3) R2-4c 10/06/2010	Fork Creel Reachwide	k Pebble Count
Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$100.00\\0.00\\0.00\\0.00\\0.00\\0.00\\0.00\\0.$	$100.00\\$
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.01 0.02 0.03 0.05 0.06 0.06 100 0 0 0 0		

Reach Name:	(Year 3) R2 Reachwide Pebble Count							
Size (mm)	TOT #	ITEM %	CUM %					
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$ \begin{array}{c} 1 \\ 0 \\ 7 \\ 7 \\ 5 \\ 11 \\ 14 \\ 13 \\ 12 \\ 11 \\ 11 \\ 6 \\ 2 \\ 0 $	$\begin{array}{c} 1.00\\ 0.00\\ 7.00\\ 7.00\\ 5.00\\ 11.00\\ 14.00\\ 13.00\\ 12.00\\ 11.00\\ 11.00\\ 11.00\\ 0.00$	1.00 8.00 15.00 20.00 31.00 45.00 58.00 70.00 81.00 92.00 98.00 100.00					
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.6 2.57 4.65 12.58 19.3 32 1 30 69 0 0 0							

10	9	8	7	8	5	4	ω	2		Gauge ID Elevation (ft) Elevation (ft)		Cres	Count		Proje	
Constantial and		AND CARD			AND	Statistics of the	633.70	629.42	653.48			Crest Gauge Information		County, State:	Project Name:	
State State	No. of States	South States		All the second second	ALC: NOT ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	A STATE OF THE PARTY OF THE PAR	633.62	629.42	653.24			rmation		Guilford	Tributar	
0	0	0.50	0	0	0	0	0	0	0	Year 0				Guilford County, North Carolina	Tributary to Reedy Fork Creek	
0	0	0	0	0	0	0	1	-	-1	Year 1		2008		1 Carolina	ork Creek	
0	0	0	0	0	0	0	-	0	1	Gauge w 1st year Year 2		2009	Year of Sampling		Installation Date:	
0	0	0	0	0	0	0	-	0	-	Gauge washed away in 1st year ar 2 Year 3		2010	ampling			
0	0	0	0	0	0	0	0	0	0	in Year 4		2011				
0	0	0	0	0	0	0	0	0	0	Year 5		2012			4/8/2008	
0	0	0	0	0	0	0 .	ω		ω	Total Exceedance by Gauge					08	